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ABSTRACT
Defining and finding the plasma-sheath boundary (also referred to as “plasma edge”, “sheath

edge” or “sheath entrance”) is a problem of general relevance in plasma physics, and particu-
larly so in the context of laboratory, space and fusion plasmas. In a most general approach this
problem starts from the Poisson equation under the condition that (i) the electron density distri-
bution is a known function of local potential, (ii) the ion source velocity distribution is known
(iii) with additional assumption that the potential profile is monotonic. The basic unknowns of
the problem to be found are the spatial potential profile and the final ion-velocity distribution.
Once this solution is found, the moments of the velocity distribution, i.e, density, particle flux
energy, and thermal fluxes are calculated based on the velocity distribution as calculated in any
location of the system like e.g., scrape-off layer (SOL) in Tokamak devices. From a physi-
cal point of view the problem was defined by Bissell and Johnson(B&J) [Phys. Fluids 30, 779
(1987)] as a task to find the ion potential profile and ion velocity distribution in a plane parallel
discharge with a Maxwellian ion source. The B&J model is a generalization of well known
Tonks-Langmuir (T&L) [Phys. Rev. 34, 876 (1929)] discharge characterized by the so-called
“cold” ion source. Unlike the T&L model, which can be readily solved analytically, attempts on
solving the B&J model with a so-called “warm” ion source were done only numerically. Since
the applicability of numerical solutions has been limited only to a narrow range of the ion-
source temperature for many years, Kos et al. [Phys. Plasmas 26(9), (2009)] recently tackled
and solved the problem without any approximation of the integral equation kernel. The solution
of Kos et al. is valid without any restriction regarding the ion temperature, i.e., applicable to
both general and fusion plasmas with high ion temperatures. However, it still remains restricted
to the specific case of ionization strength distribution, which is according to B&J proportional
to the local electron density. In this paper we extend further the Kos et al. model to the case of
constant ionization strength distribution.

820.1



820.2

1 INTRODUCTION

The Tonks-Langmuir [1] problem of collisionless discharges is a rather old and elementary
one but, unfortunately, solved only under various assumptions which facilitate obtaining the
solution but restricting its range of validity to particular applications. A general mathematical
formulation of the problem can be expressed as a task to find function Ψ(Φ). Our mathematical
formulation of the problem can be expressed in the form of a fairly general integro-differential
equation

ε2n(Φ)
1

Ψ3

dΨ

dΦ
= 1− λ

∫ Φ

0

Ψ(Φ′)K (τ(Φ′ − Φ)) dΦ′ (1)

with prescribed singular kernel K, prescribed function n(Φ), arbitrary parameters ε and τ and
the eigenvalue of problem λ.

Tonks and Langmuir found that the plasma and sheath problem can be split into “plasma
approximation” where strict quasineutrality is assumed and “sheath approximation” with the
electric field taking the role. The corresponding two regions of the plasma–wall transition layer
are often referred as “the presheath” and “the Debye sheath”. They found approximate solutions
for these two regions for plane, cylindrical and spherical geometries. Their “intuitive” approach
of splitting the plasma-sheath equation into two parts was later rendered into a rigorous mathe-
matical context by Caruso and Cavaliere [2], who employed for this purpose the boundary layer
theory by van Dyke. This approach in plasma physics is now known as the “two-scale” ap-
proximation. Following this approach Harrison and Thompson (H&T) [3] upgraded Tonks and
Langmuir approximate solution to an exact analytic one, however, holding for cold ion source
distribution under the assumption of strict quasineutrality (ε = 0). Soon after H&T publication
Self [4], however, announced a complete numerical solution, i.e., with the quasineutrality as-
sumption removed, but still with a singular (cold) ion source (Tn = 0). Emmert et al. [5] tackled
the plasma solution (ε = 0) with a regular (warm) (Tn 6= 0) but artificial ion source, prepared
in advance to yield a Maxwellian ion distribution function. Bissell and Johnson [6], however,
have decided to start from a more realistic, i.e., Maxwellian ion source, and found a numerical
solution within a limited range of ion source temperatures. Their model was constrained by
their choice of the kernel approximation and polynomial approximation of the model. Soon
after their work Scheuer and Emmert (S&E) [7] used a better kernel approximation enabling
them to find a solution also holding in the range of small ion source temperatures, but, unfortu-
nately, not for relatively ’warm’ ion sources, which is of high importance to fusion application.
Several years after the S&E work the numerical method, libraries and computing resources dra-
matically increased. Kos et al. [8] recently became able to employ an exact kernel instead of
an approximate one. Kos et al. solved the plasma problem with a Maxwellian source without
any restriction regarding the ion temperature, however, for ε = 0 and for a commonly adopted
assumption of the ionization source profile. Here we extend the investigations of Kos et al. to
another kind of ionization profile.

2 THEORETICAL BACKGROUND

The general formulation of the problem in plane-parallel symmetric discharge consists in
simultaneously solving Boltzmann’s kinetic equation for the ion velocity distribution function
(VDF) fi(x, v),

v
∂fi
∂x
− e

mi

dΦ

dx

∂fi
∂v

= Si(x, v) , (2)
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and the Poisson’s equation

−d
2Φ

dx2
=

e

ε0

(ni − ne) . (3)

The source term Si(x, v) on the right-hand side of Eq. (2) describes microscopic processes
assumed for a particular scenario of interest, x is the Cartesian space coordinate, v is the particle
velocity, e is the positive elementary charge, mi is the ion mass, Φ(x) the electrostatic potential
at position x, ε0 is the vacuum dielectric constant and ni,e are the ion and electron densities,
respectively.

The schematic diagram of the geometry of the problem is shown in Fig. 1. The plates at

Φ(x)

x = 0 x = Lx = −L

Φ(x)

(x, v)

Φ(x′)

(x′, v′)

Φw

x

Figure 1: The geometry and coordinate system.

x±L are assumed to be perfectly absorbing and electrically floating. The electrostatic potential
Φ(x) is assumed to be monotonic decreasing (for x > 0) and is defined to be zero at x = 0.
Below we give a comprehensive analysis of the Tonks-Langmuir mode starting from the general
solution of kinetic Eq. (2). The source term Si(x, v) is in general

Si(v, x) = Rnnne(x)fn

(
v

vTn

)
H

(
miv

2

2

)
, (4)

where R is the ionization rate , nn is the density of neutrals. The electrons follow Boltzmann
distribution

ne(x) = n0 exp

{
eΦ(x)

kTe

}
. (5)

with n0 the electron density at x = 0. We employ the Heaviside step function as denoted by
H(z) for assuring a positive sign of the kinetic energy of the ions. The velocity distribution
function fn(v/vTn) of the neutrals in our work is normalized as∫ ∞

∞
fn

(
v

vTn

)
dv = 1 , (6)

where vTn =
√
kTn/mi is the thermal velocity of born ions defined by temperature Tn of

the neutral gas, Tn ≡ Ti,src. Due to the symmetry we further consider the right-hand half
of the discharge, x ≥ 0. For the ion flux onto the wall from Eqs. (2), (4) and (6) we find
Γi = RnnLne,av, where ne,av represents the average value of the electron density over the
system:

ne,av =
1

L

∫ L

0

ne(x)dx . (7)
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The requirement that the ion current must be equal to the electron current at the wall enables us
to write Γi = Γe, and

LRnnne,av =
1√
2π
vTen0 exp

{
eΦw

kTe

}
, (8)

where vTe =
√
kTe/me, and me, Te are the electron mass and temperature respectively, Φw is

the wall potential. With the help of an auxiliary function

Fn

(
v

vTn

)
=
√

2π · vTnfn

(
v

vTn

)
(9)

the source term (4) acquires the form

Si(x, v) =
1

L
Bne(x)Fn

(
v

vTn

)
H

(
miv

2

2

)
, (10)

B =
1

2π

√
Te
Tn

mi

me

n0

ne,av
exp

{
eΦw

kTe

}
. (11)

with B related to the ionization frequency νi and the characteristic ionization length λi is:

νi = B

√
2π

L
vTn , and λi =

cs
νi

=
L

B

√
Te

2πTn
. (12)

The general solution of Eq. (2) with the source term Eq. (10) is

f±i (x, v) = ± B

L
n0

x∫
dx′√
v′2

exp

(
eΦ(x′)
kTe

)
Fn

(
±
√
v′2

vTn

)
H(v′2) + f̄i

±
(
v′2 +

2e

mi

Φ(x′)
)
,

(13)

where v′2 = v2 − 2e[Φ(x′) − Φ(x)]/mi In Eq. (13) f±i denotes the distribution function of
the ions moving in the positive (,,+”) and negative (,,-”) directions of the x-axis. Functions
f̄±i (x, v) are the arbitrary functions corresponding to the homogeneous part of Eq. (2) to be be
constrained by conditions: (a) At the center of the system, x = 0, the distribution function must
be symmetric in the velocity space f+

i (0, v) = f−i (0, v). (b) Due to perfect absorption there
are no ions at the wall surface, x = L, moving with the negative velocity (it means from the
wall): f−i (L, v) = 0. After straightforward calculations we obtain the following solution of the
Boltzmann kinetic equation for the arbitrary distribution function of neutrals.

f+
i (x, v) = B

n0

L


x∫

0

dx′Fn

(√
v′2

vTn

)
+

L∫
0

dx′Fn

(
−
√
v′2

vTn

) 1√
v′2

exp

{
eΦ(x′)
kTe

}
H(v′2) ,

(14)

f−i (x, v) = B
n0

L

∫ L

x

dx′
1√
v′2

exp

{
eΦ(x′)
kTe

}
H(v′2)Fn

(
−
√
v′2

vTn

)
. (15)
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For the ion number density and the ion flux from Eqs. (14) and (15) we have

ni(x) =

∫ ∞
0

dv{f+
i + f−i }

= 2B
n0

L

∫ ∞
0

dv

{∫ L

0

dx′√
v′2
Fn

(
−
√
v′2

vTn

)
H(v′2) exp

{
eΦ(x′)
kTe

}

+

∫ x

0

dx′√
v′2

[
Fn

(√
v′2

vTn

)
− Fn

(
−
√
v′2

vTn

)]
H(v′2) exp

{
eΦ(x′)
kTe

}}
,

(16)

Ji(x) =

∫ ∞
0

dvv{f+
i − f−i }

= B
n0

L

∞∫
0

dvv

x∫
0

dx′
1√
v′2

exp

{
eΦ(x′)
kTe

}
H(v′2)

{
Fn

(√
v′2

vTn

)
+ Fn

(
−
√
v′2

vTn

)} (17)

In order to find the floating potential by comparing the ion and the electron fluxes onto the
wall, we further analyze the expression of the ion flux Ji(L) from Eq. (17) at x = L. For the
Maxwellian source the auxiliary function (9) is

Fn

(
v

vTn

)
= exp

(
− v2

2v2
Tn

)
. (18)

At this point we introduce the dimensionless quantities

u =
v√
2cs

,
eΦ(x)

kTe
→ Φ(x) ,

x

L
→ x , n =

ni
n0

, j =
Ji
n0cs

, τ =
Te
Tn

, cs =

√
kTe
mi

. (19)

The expressions for the ion density and the ion flux in Eqs. (16) and (17) can be simplified to

n(x) = 2B

∫ ∞
0

du

∫ 1

0

dx′ exp(Φ(x′))

× exp (−τ{u2 − Φ(x′) + Φ(x)})√
u2 − Φ(x′) + Φ(x)

H(u2 − Φ(x′) + Φ(x)) ,

(20)

j(L) = 2
√

2B

∫ ∞
0

duu

∫ 1

0

dx′ exp(Φ(x′))

× exp (−τ{u2 − Φ(x′) + Φ(x)})√
u2 − Φ(x′) + Φ(x)

H(u2 − Φ(x′) + Φ(x)) .

(21)

The integral over x′ in Eq. (20) can be split into two parts∫ 1

0

dx′(. . . ) =

∫ x

0

dx′(. . . ) +

∫ 1

x

dx′(. . . ) . (22)

In the first interval (0, x) of the integration we see that Φ(x′) − Φ(x) ≥ 0 holds, and in the
second Φ(x′) − Φ(x) ≤ 0. This allows us to use the cut-off property of the H-function and
finally we find

n(x) = B

∫ 1

0

dx′ exp[Φ(x′)] exp
[τ

2
{Φ(x′)− Φ(x)}

]
K0

{τ
2
|Φ(x′)− Φ(x)|

}
, (23)
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j(1) =

√
2π

τ
B

∫ 1

0

dx′ exp[Φ(x′)] . (24)

In obtaining Eq. (23), the relation

2

∫ ∞
0

exp(−τx2)√
x2 + a2

= exp
(τ

2
a2
)

K0

(
τa2

2

)
(25)

was also used. Here K0(z) is the modified Bessel function of zero order. Eq. (23) coincides with
the expression for the ion density used in [6] and [7]. In the limit of the cold source, Tn → 0
where the auxiliary function reads Fn(v/vTn) =

√
2πvTnδ(v), (δ(z) is the Dirac δ-function) we

find the expression for the ion density

n(x) =
1√
2

∫ x

0

dx′

λi

exp[Φ(x′)]√
Φ(x′)− Φ(x)

(26)

discussed previously in detail in [9, 10]. In Eq. (26) λi is defined by Eq. (12). In notation (19)
Poisson’s Eq. (3) acquires the form

B

∫ 1

0

dx′ exp[Φ(x′)− Φ(x)] exp
[τ

2
{Φ(x′)− Φ(x)}

]
K0

{τ
2
|Φ(x′)− Φ(x)|

}
= 1− ε2 exp(−Φ)

d2Φ

dx2

, (27)

where ε = λD/L it the arbitrary parameter and λD =
√
ε0kTe/e2n0 is the electron Debye

length. Eq. (27) describes the potential profile for the arbitrary temperature of the source. When
considering ϑ = 1/Θ the main equation of the problem becomes

1

B
=

1

1− exp(−Φ)ε2
d2Φ

dx2

×
∫ 1

0

dx′ exp
[
(ϑ+

τ

2
)Φ(x′)− (1 +

τ

2
)Φ(x)

]
K0

{τ
2
|Φ(x′)− Φ(x)|

}
.

(28)

With explicit source distribution and ϑ the non-dimensional form of ion VDF is

fi(Φ(x), v) = B

∫ 1

0

dx′ exp(ϑΦ′)
exp [−(v2 − (Φ′ − Φ))/Tn]√

v2 − (Φ′ − Φ)
. (29)

Please note that we replaced the original H&T notation of the ionization profile exp(γeΦ/kTe)
with exp(ϑeΦ/kTe) for the reason that coauthors of the present work use “γ” symbol as exclu-
sive denotion for the “polytropic” coefficient (see e.g., Ref. [11]). Using Eq. (8) and Eq. (24)
for finding the floating potential of the wall we obtain the relation

exp(Φw) = 2π

√
me

mi

√
TnB

∫ 1

0

dx′ exp[Φ(x′)] . (30)
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3 ANALYTIC-NUMERICAL METHOD

Equation (28) is a Fredholm type integro-differential equation with a singular kernel and
nonlinear function related to Poisson Eq. (3). Solution function Φ(x) is known to be smooth and
monotonous and also to have endpoint singularity when ε = 0. Additionally, Eq. (28) contains
unknown constant B that represents “eigenvalue” of the system. In collocation methods the
singular behavior at the boundaries of the interval [0, 1] can be taken into account by using non-
uniform grids with increasing density when approaching singularity. For N collocation points
we introduce the following node positions

xi =
[
1− [1− i/(N − 1)]λ2

]λ1

, i = 0, 1, . . . , N − 1 , (31)

where λ1 and λ2 control the density at each boundary. Rearranging Eq. (28) into a form suitable
for an iterative procedure and discretizing it into subintervals we obtain

exp

[
(1 +

1

2Tn
)Vk

]
=

B

1− exp(−Φ)ε2
d2Φ(x)

dx2

×
N−1∑
i=0

xi+1∫
xi

dx′ exp[(ϑ+
1

2Tn
)V (x′)] K0

(
1

2Tn
|V (x′)− Vk|

)
.

(32)

Each node value Vk is also a source for diagonal singularity in kernel K0(z) (a singularity as
x′ → xk). In practice, the computation on strongly graded grids may be unstable since the grid
points may be located to close to each other near boundaries and the system of equations may
become rapidly ill-conditioned with increasing λ1, λ2 and N .

We refer to Ref. [8] for details. In this contribution we extend the domain of applicability of
this technique to ε = 0 and ϑ = 0. To overcome stability problems we introduce a mildly graded
piecewise Lagrangian polynomial interpolation of order 2 and 3. Although such approximation
is often considered to be to expensive for numerical computation, it possesses beautiful sym-
metry and with a modified (weighted) form is comparable in speed to other approximations.
Additionally, we found that solution for ϑ = 0 (flat ion-source profile) is surprisingly stiffer
than for ϑ = 1. This could be due to imbalance in exp(z) functions on both sides of Eq. (32).
Shifting of the whole solution for −V0 was required to speedup convergence as shown in Fig. 2
where we illustrate the diagnostic procedure of obtaining “saturated” solution. The staircase
effect in Fig. 2(b) is just an illustration of a local convergence when shifting to the origin is
not performed within dense intervals. Such behavior was not observed for ϑ = 1. Fig. 2(a)
shows that endpoint value Φs converges faster than B. An additional advantage of our program
package is a feature of automatic checking of the convergence criterion for both Φs and B.

4 RESULTS

In Fig. 3 we show the results of a huge number of simulations performed with our program
package. The novelity in the last version is that we have possibility to calculate the results with
various ion source spatial distribution. In Fig. 3(a) we show the classical case of Kos et al. [8]
while in Fig. 3(b) we show the results obtained for the purpose of present investigation.

In Fig. 4 we show quantitative results, i.e., comparison of the results obtained with “classi-
cal” ion source distribution as employed by B&J, S&E and Kos et al. with the result obtained
in the current investigation (constant ion source).
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Figure 2: Convergence plots for Tn = 4 and flat
source: (a) Boundary point Φs, and (b) eigen-
value B.
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Figure 3: Comparison of potential profiles for
(a) Boltzmannian ion source distribution and
(b) Constant ion source distribution.
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Figure 4: Comparison of B&J (blue scat-
tered) with our analytic-numerical model (blue
solid line) and S&E (red scattered) with our
analytic-numerical method for flat ion-source.
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scattered) with our PIC simulation (red solid
line)
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In Fig. 5 we compare our results of a constant ion source with scanned results of S&E.
It turns out that S&E in fact worked with the constant ion source and NOT with the source
proportional to electron density.Fig. 6 shows the plasma potential at the point of the electric
field singularity. The difference between the cases corresponding either of above sources is so
small that it could not be seen within the drawing accuracy at all. This result is well aligned
with the theoretical predictions of e.g., Caruso and Cavaliere [2].

0 4 8 12 16 20
0.3

0.4

0.5

0.6

0.7

0.8

0.9

s

T
n

Figure 6: Boundary potential Φs dependency
on the normalized ion-source temperature Tn.
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Figure 7: Ionization lengths of two alternative
ionization mechanism as defined by H&T.

In Fig. 7 we show our capital result, i.e., comparison of the results obtained for the two
alternative source profiles. While over several decades the results were known only for cold ion
sources (we illustrate the cases of H&T as single points) our results extend to any ion-source
(e.g., neutral) temperature.

5 DISCUSSION AND CONCLUSION

Our investigation covers a wide range of ion-source temperatures for ϑ = 0. In fact this is
the first investigation of the kind using the analytic-numerical method. (Other methods assume
employment of PIC method (see e.g., Krek. et al. [12]).

Our main result is obtaining the ionization length for an arbitrary ion temperature (Fig. 7)
and for arbitrary ionization profile strength. A particular case of flat ionization profile is elab-
orated in details and compared with “classical” B&J model, showing that the plasma-sheath
boundary potential Φs is invariant on the particular ionization profile choice. The detailed pro-
files and the ionization lengths, on contrary, are not invariant on the particular potential profile
choice. The dependence of the ionization length on the ion-source (neutral gas) temperature is
investigated in detail for both flat and Boltzmann-distributed ionization sources.

In addition, this work also shows how to extend the results to finite (arbitrary) ε which will
be considered in a forthcoming paper.
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