
Towards 3D Time Dependent Visualization within ITM-TF
infrastructure

Leon Kos1, Olivier Hoenen2, Simon Kulovec1, Philippe Huynh3, Jožef Duhovnik1,
Frederic Imbeaux3

1University of Ljubljana, Faculty of Mech. Eng., Aškerčeva 6, SI-1000 Ljubljana, Slovenia,
{leon.kos, simon.kulovec, jozef.duhovnik}@lecad.fs.uni-lj.si

2 Strasbourg University, IRMA, 7 rue Descartes, 67084 Strasbourg, France,
olivier.hoenen@unistra.fr

3CEA, IRFM, F-13108 Saint Paul Lez Durance, France,
{philippe.huynh, frederic.imbeaux}@cea.fr

ABSTRACT
Complex visualizations are foreseen for upgraded fusion codes under the EFDA Task Force

on Integrated Tokamak Modeling (ITM-TF). We present upgrades of the work that was carried
under project EUFORIA (EU Fusion for ITER Applications) and then integrated into ITM-ISIP
(Infrastructure and Software Integration Project) set of tools. Scientific workflows, managed
by Kepler engine, are executed with encapsulation of fusion codes on variety of computing
resources. For support of visualization on common fusion database layer, an adaptation of
visualization tools are required. Time dependence of 3D results are normally shown in cross
sections as animations. This is impractical for real scientific work as it is hard to quantitatively
measure how parameters of interest evolve through time. Fusion experiments and simulation
are dumped as shots into ITM database through UAL (Universal Access Layer). Visualization
software can with the help of “representation fields” show any slice data from UAL at point of
time, but not as time dependence. To provide such views, upgrade of visualization components
is required. VisIt software with UAL plugin and actors developed are used as visualization
engine under Kepler workflows.

1 INTRODUCTION

Integrated Tokamak Modeling Task Force (ITM-TF) is aiming to provide a unified frame-
work for fusion codes that already exists in decoupled state, each providing modeling of some
elementary physics problem. In order to synchronize numerical simulations with experimental
data that is already captured into scientific databases like MDSplus (or MDS+), HDF5 [1, 2]
further encapsulation of databases were proposed by ITM-TF to facilitate specifics of fusion
modeling. Namely, shot and run are typical selectors for given ITM tokamak-database, while
the underlying MDS+ and HDF formats are structured in such way, that objects stored follow
prescribed structure of elementary physics problems. Description of data is done through the

1008.1

mailto:leon.kos@lecad.fs.uni-lj.si
mailto:olivier.hoenen@unistra.fr
mailto:frederic.imbeaux@cea.fr

1008.2

KeplerVisIt

G
U

I

ITM tokamak
database

Universal Access
Layer (UAL) C++
library

MDS+
HDF5 raw
file storage

VisIt UAL plugin
(VUP)

VisIt Kepler Actor
(VKA)

jVisIt Java control
library

Consistent
Physical
Objects (CPO)

Session save
and restore

windows
control

IPC

I/O

Figure 1: Schematics and communication of basic components for visualization with VisIt
under Kepler workflows.

notion of Consistent Physical Object (CPO) data model [3] with the aim to unify description
of specific physical properties used within experiments and/or numerical simulations. Such en-
capsulation is necessary to maintain consistent description of “objects” that are stored/retrieved
from ITM database using various “fusion codes” in Integrated Tokamak Modeling pursuit. Con-
sistency enforced by CPO data model requires that existing codes need to be “adapted” to be
able to retrieve/store results into prescribed CPOs. This task requires developer’s knowledge of
the code and CPOs description that needs to be mapped to each other in enforced units (MKSA
and eV). After (necessary) adaptation, code can be executed as a back-box within “scientific
workflows” that couples different codes in a compatible way and sequence.

As the adapted code can store results in a compatible way (in CPOs) during simulation,
there is a possibility to visualize them using general tools that are able to read data described
by CPOs. Such CPO-aware visualization tools were nonexistent and developed [4] by EUFO-
RIA/JRA4 project where VisIt software [5] was selected as a general visualization open-source
software maintained by LLNL. VisIt is a popular and extensible visualization software that pro-
vides various representation modes and data post-processing in interactive and batch/scripting
mode. “Adaptation” of VisIt to be able to read CPOs was developed via plugin in similar way
like any code adaptation. To simplify CPO access and consistent maintenance, ITM-TF uses
XML description of CPO and XSLT translation that generates necessary libraries and CPO
description (include files) for different programming languages. Besides language compatible
CPO description one needs also library routines that helps retrieving and storing CPOs in a
“physical” database. This library named as Universal Access Layer [6] (UAL) provides a set
of routines for “middle-ware” database access tailored especially for CPO transfer. UAL is
“universal” in a way that different languages use the same routine names and that data transfer
is simplified without compromising efficiency when using coupled codes in a workflow. To
simplify workflow modeling ITM-TF selected Kepler [7] software that provides graphical user
interface (GUI) for describing information flow between computing units called “actors”. An
actor can be encapsulated fusion code or, in our case, VisIt visualization tool. Fig. 1 shows
schematics of the layers in tools introduced required just for visualization part within workflow.
Specialized actors for Kepler has been developed [4] to provide direct visualization acting un-
der workflows directly. VisIt Kepler Actor (VKA) provides VisIt launching and controls UAL
reading of selected CPOs in a user configurable way. VisIt provides a session configuration that
can facilitate a visualization with applied data operators, window positions, ranges, labeling,
etc, to be stored/restored for reuse. Communication between VKA and VisIt is made with jVisIt
library that VisIt provides when Java (Kepler native) language is required. Figure 2 shows our
“universal” VKA in a visualization-only workflow. Input database is single (VisIt native) SILO

Proceedings of the International Conference Nuclear Energy for New Europe 2011, Bovec, Slovenia, Sept.12-15, 2011

1008.3

Figure 2: Simple Kepler workflow with VisItSession visualization actor (VKA) on top of the
VisIt windows (GUI, divertor detail and vessel mesh) showing simulation results from SOLPS.

file format. VisIt use in workflow is therefore not bonded to specific (UAL) type of input. Inter-
process communication (IPC) between VKA and VisIt with it’s own GUI provides a possibility
to user to further tailors visualization aspects and session configuration. For “regular” codes
this is normally not the case as they needs to be additionally “wrapped” for inclusion in Ke-
pler workflows. The reason for this is that codes are usually not written in Java as required by
Kepler. To facilitate that ITM-TF provides actor generator tools (fc2k, hpc2k, ws2k, ...) which
make this process straightforward for Fortran and C++ codes.

2 TIME DEPENDENT VISUALIZATION

Unless there is some “steady-state” phenomena simulated, time is a key physical quantity
of a tokamak modeling. ITM database structure reflects experiments identified by shot and
run on each machine by CPOs that are time-varying during a plasma pulse. Present simulation
codes used in tokamak modeling are all based on time evolution that resembles experiment as
close as possible. So, there is already established close correlation between simulation and
experimental data. ITM database is thus just a “unification” of both established data models
with carefully crafted hierarchy named CPOs as shown in Table 1. During experiment nearly
all CPOs are time dependent (i.e. varying during a plasma discharge). Exceptions to that are
usually geometrical and positional quantities that are not repeated when time evolves. Time
dependence (TD) of CPOs can be carried at different (monotonic) sampling times. Reasoning
for different time-bases is due to different data purpose of each CPO. Some effects can be very
fast, and other relatively slow-varying or even constant for some physics simulated. Each time
dependent CPO in Table 1 is therefore represented as an array of CPOs with assigned sample
times. TD CPO thus automatically means array of look-alike CPOs. Internal CPO structure
is hierarchical (or object oriented) and can be quite complex with several levels in depth. For
detailed CPO description see Ref. [3]. Physical quantities in TD CPOs are structured as multi-
dimensional arrays (up to 6D in the present implementation). Single TD CPO can be extracted

Proceedings of the International Conference Nuclear Energy for New Europe 2011, Bovec, Slovenia, Sept.12-15, 2011

1008.4

Table 1: Time dependence (TD) for various CPO structures
CPO name Description TD
Topinfo General information about the database entry No
Summary Set of reduced data summarizing the main simulation parameters for the data base catalog No
Antennas RF antenna list Yes
Controllers Description and parameterization of a feedback controller Yes
Coredelta Generic instant change of the radial core profiles due to pellet, MHD, etc. Yes
coreneutrals Core plasma neutrals description Yes
coreimpur Impurity species (i.e. ion species with multiple charge states), radial core profiles Yes
coreprof Core plasma 1D profiles as a function of the toroidal flux coordinate, obtained by solving the core

transport equations (can be also fitted profiles from experimental data)
Yes

coresource Generic source term for the core transport equations (radial profile) Yes
coretransp Generic transport coefficients for the core transport equations (radial profile) Yes
equilibrium Description of a 2D, axi-symmetric, tokamak equilibrium; result of an equilibrium code Yes
interfdiag Interferometry; measures line-integrated electron density [m−2] Yes
ironmodel model of the iron circuit Yes
launchs RF wave launch conditions Yes
limiter Description of the immobile limiting surface for defining the Last Closed Flux Surface No
MHD MHD linear stability Yes
magdiag Magnetic diagnostics Yes
msediag MSE diagnostic Yes
neoclassic Neoclassical quantities (including transport coefficients) Yes
orbit Orbits for a set of particles Yes
pfsystems Description of the active poloidal coils, passive conductors, currents flowing in those and mutual elec-

tromagnetic effects of the device
Yes

polardiag Polarimetry diagnostic; measures polarization angle [rad] Yes
sawteeth Description of sawtooth events Yes
scenario Scenario characteristics, to be used as input or output of a whole discharge simulator Yes
toroidfield Toroidal field Yes
vessel Mechanical structure of the vacuum vessel No
waves RF waves propagation Yes

(and interpolated) at specified time for codes that operate at selected slice (or cycle in VisIt
terminology).

VisIt as a general visualization tool is capable of complex visualizations that are primarily
3D. Experimental data that is imported into UAL by ITM-TF tool exp2itm mostly comes in 1D
TD form and can be inspected by surplus of graphing tools. ITM-TF for UAL signal inspec-
tion provides Integrated Simulation Editor (ISE) that will combine analyses and workflows in
a “study”-like manner. VisIt role in workflows is dedicated to inspection of 3D or even 4D data
resulting from “integrated modeling”. Normally, insight into 3D data is extracted by variety
of operators at selected cycle (moment in time). Animation and time-slider can be useful TD
tools for general overview of inspected phenomena. VisIt normally uses FlipBook animation for
showing time-varying databases. Controls for moving though cycles/time are similar to many
software players (or VCR). Scientific visualizations normally do not require time-cycle relation
between time and animation but rather investigate interesting phenomena. For that purpose ad-
ditional key-framing can be applied to animation for the sole purpose of directing animation to
final movie creation. During key-framing VisIt operators with view and plot attributes can be
applied at specified frames. When multiple time-varying databases are used one can use differ-
ent (padded, stretched, time, cycle) correlations to align temporal states among them. Similar
temporal alignments (closest, previous) can be obtained from UAL database with getSlice()
method.

For quantitative analysis of such data VisIt provides queries that can also be time dependent.
Resulting Time curve as shown in Fig. 3 workflow is easily evaluated as time dependent max
value. Other queries like pick or some functional applied on data can be scripted using built-in
set on functions. Result of all such queries is always single TD curve. Multiple (different)
queries can be stacked in one graph for condensed analysis. Time range and stride sampling
is used for limiting interest and computational effort with complex data. For 2D and 3D TD

Proceedings of the International Conference Nuclear Energy for New Europe 2011, Bovec, Slovenia, Sept.12-15, 2011

1008.5

Figure 3: Minimal Kepler workflow with VisitUAL actor reading coresource/qi/imp CPO field
from UAL database as specified by ualinit actor. Time dependent maximum value of the core-
source/qi/imp CPO field is displayed in Window 2. 2D representation at (plasma breakdown)
time=0.0 (cycle 0000) is shown in Window 1. Query window shows some possible queries-over-
time built-in. Window Display prints structure passed to VisitUAL input describing database
and CPO.

queries VisIt provides lineout operator that samples values along a line in space. Result is
graphed as a set of curves at selected time steps. The principal problem with lineout operator is
that no operator can be applied after it. One might conclude that representing time with VisIt
is limited to x/y graphing. In fact, many 2-4D TD data is difficult to represent on 2D surface.
That’s why animation is useful and default kind of inspection for TD data. VisIt advantage is a
“large” set of operators that “reduce” 3D data to the area of interest. Operators are considered as
filters and as such are stacked for complex visualizations. As there are many possibilities within
VisIt for creation of specialized visualizations, one can also apply operators on TD database
slices disconnected from Time Slider and combine them in a single window. The result is timed
3D representation of data on 2D surface. Fig. 4 is an example of such operations of time-varying
2D scalar value . Window 1 in Fig. 3 is a single slice. Elevated (and clipped) slices are translated
along desired “time” axis in Windows 1 and 2 of Fig. 4. Slices are samples and non-continuous
time representation is normally a must, unless some interpolation is desired. To achieve this,
GUI operations with operators are not sufficient. To compensate special desires, VisIt provides
Python scripting that can be part of built-in functionality. For example, lineout along path and
slicing along time produces 2D mesh data that can be further inspected with surface operators.
For 3D TD data reduction of dimension is required with pick operators prior to extension with
time. In fact, for 3D TD representation, scripting is required, as there is no standard operators
readily available. Slicing 4D data to get 3D is one possibility. But not as operator as there is
no treatment in VisIt for 4D and higher dimensions. VisIt provides custom plot plugins just
like database plugins. With 3D TD (i.e. 4D) slice plot one could configure reduction surface
of interest and add time dimension instead to get 3D volume data for further processing. Such
developments are still under consideration by ITM-TF when visualizations of such type will be
required. For now, built-in python scripting suffices for our TD visualizations.

Proceedings of the International Conference Nuclear Energy for New Europe 2011, Bovec, Slovenia, Sept.12-15, 2011

1008.6

Figure 4: Time dependent visualization of sample coresource/qi/imp CPO field with applied
stack of VisIt operators. Elevated and translated samples at 3 selected times are shown in
Window 1. Slightly different representation in Window 2 with additional central clipping and
translation along x-axis is more traditional 3D presentation of time evolution.

3 VISUALIZATION COMPONENTS

Here we briefly describe two major components that were upgraded for TD visualizations
under Kepler workflows. VisIt actor is placed in Kepler workflows, while UAL-plugin provides
UAL read connectivity for VisIt.

The VisIt Kepler Actor (VKA) provides VisIt visualization software capabilities to the
Kepler platform. Although VKA can be unified to support both kinds of databases we decided
to have two actors for sake of generality of the first. The second one is then just an extension of
the general VKA that requires VisIt plugin for UAL to operate. For this reason VisitUAL actor
was “renamed” to VisitSession to emphasize it’s generality while new VisitUAL composite
actor was created for CPO/UAL visualizations.

VisitSession actor shown in Fig. 2 can restore session created previously within VisIt but
with new source database. Session saved within VisIt GUI consists of all windows, applied
plots, operators and attributes. This means that user can configure session under VisIt GUI
inside or outside Kepler. Then user builds a particular visualization for the quantities of interest.
Finally, user stores a VisIt session file which contains all the information needed to restore the
state of VisIt when the session file is generated. In the second stage, the user launches Kepler,
inserts the VKA to his workflow and add as parameter of the VKA the session file generated
at stage 1. When the workflow is executed, once the VKA is activated by the workflow, one
or several visualization windows will pop up with the data contained in the incoming database.
The resulting picture is rendered with the visualization parameters contained in the session file.
Of course an error is raised if the data used to make the session file are not in the incoming
database. This means that session files are special tailored descriptions of visualizations with
expected inputs. Normally most programs that require visualization also generate scripts for
visualization software like IDL, gnuplot, ... VisitSession is a similar approach but with GUI that
saves XML session. Such session can then be shared and collected for visualizations of interest
and used as standalone or within Kepler workflow. Such approach is useful for fusion codes

Proceedings of the International Conference Nuclear Energy for New Europe 2011, Bovec, Slovenia, Sept.12-15, 2011

1008.7

and experiments that output complete results in UAL database but researchers are interested in
specific phenomena and selected variables and ranges that needs to be monitored within larger
scientific workflow supported by Kepler. VisitSession actor was extended to search for its input
files from standard data locations ($HOME/.visit for sessions and $VISIT DATA for databases)
when no path is given as an input filename.

For UAL database and CPO support composite actor VisitUAL was created as a convenience
actor that includes standard Kepler actors together with VisitSession actor. Coupling VisIt to
UAL is supported by ual reader database plugin. VisIt by design needs to open database pro-
vided as filename. UAL database plugin thus needs .ual file provided before it can open UAL
within VisIt. Creation of this file can be manual with one line specifying CPO, shot and run.
After UAL database is opened with VisIt than one can create a session file for restore within Ke-
pler workflow. Fig. 3 shows such a workflow with user supplied visualization settings. Location
of ualfile is given for automatic creation at specified location. This location can be the same as
previously manually generated session file. It should be noted that this ualfile is then generated
from workflow using VisitUAL actor shown in Fig. 3. Composite actor is therefore responsible
just for passing appropriate arguments through file when opening UAL. VisitSession actor then
takes this as an input and restores session as usual.

UAL plug-in for VisIt (ual reader) enables VisIt fusion data reads through the UAL in or-
der to build the resulting visualization. VisIt is built on top of Analysis and Visualization Toolkit
(AVT) that has strong correlation to VTK Toolkit made by Kitware. Data structures from UAL
needs to be represented in AVT compatible way. When CPO is read into memory all data is
available and information on how this data can be “naturally” represented in coordinate system
is being amended by physicists. “Natural” representation of data of interest is related to conven-
tions and physicist’s way of thinking. For example, one needs to decide which field represent x
and y-axis for 1D Curve. Adding such representation tags in XML CPO definitions is ongoing
task of ISIP-TF. With this representation information added in the CPO XML description VisIt
should provide a very simple way to make nice plots in a couple of clicks. Source code for
building ual reader is supported by XSLT code generation that simplifies frequent CPO defi-
nition upgrades. Latest XSL Translator development enabled time dependent representation as
shown in Figs. 3 and 4. VisIt move from Makefile’s to cmake simplified code maintenance and
now several versions of ual readers can coexist in plugin directory.

4 CONCLUSION AND FUTURE WORK

Latest enhancements of ITM-ISIP VisIt-related tools targeted at UAL and Kepler workflows
enabled time-dependent representation that was previously missing and was a major require-
ment for widespread use under ITM-TF. As VisIt is under active development at LLNL and
now the only powerful visualization software that runs under Kepler, we believe that it will play
a major role supporting integrated ITER modeling. Present article is thus aimed into promotion
of recent advances. User feedback, collaboration and implementation of ideas is necessary to
overcome recognized deficiencies. One such idea comes from ualconnector ITM-TF software
developed recently by H.-J. Klingshirn that “exploits” special VisIt library libsim. Simulation
library libsim allows VisIt to connect to running simulation and acquires desired plot data on the
fly. Such “disconnected” use of VisIt could be in principle more versatile for Kepler workflows.
For now libsim provides Python, Fortran and C interface, while Java is used in Kepler. Dy-
namic representation generation by using Python grid service library to analyze the CPOs can
be more flexible than having to update the representation information in the CPO description for

Proceedings of the International Conference Nuclear Energy for New Europe 2011, Bovec, Slovenia, Sept.12-15, 2011

1008.8

simple plots based on the General Grid Description [8] used in the CPOs. Presently, our tools
and ualconnector are complementary, while ideally, both tools would like to have counterpart
features.

ACKNOWLEDGMENTS

This work was supported by the European Commission under: (i) EUFORIA agreement
number 211804 within the 7th Framework Program; (ii) Contracts of Associations MHEST,
CEA between The European Atomic Energy Community (EURATOM), and (iii) Ministry of
Higher Education, Science and Technology of the Republic of Slovenia No. FU06-CT-2007-
00065. It was carried out within the framework of the European Fusion Development Agree-
ment, under the EFDA Task Force on Integrated Tokamak Modeling. The views and opinions
expressed herein do not necessarily reflect those of the European Commission.

REFERENCES

[1] “MDSplus – data acquisition and storage tools,” http://www.mdsplus.org (2011).

[2] “HDF – hierarchical data format,” http://www.hdfgroup.org/ (2011).

[3] Frederic Imbeaux, J. B. Lister, G. T. A. Huysmans, W. Zwingmann, M. Airaj, L. Ap-
pel, V. Basiuk, David Coster, Lars-Goran Eriksson, Bernard Guillerminet, Denis Kalupin,
C. Konz, Gabriele Manduchi, M. Ottaviani, G. Pereverzev, Y. Peysson, O. Sauter, J. Sig-
noret, and Par Strand, “A generic data structure for integrated modelling of tokamak physics
and subsystems,” Computer Physics Communications 181, 987–998 (2010).

[4] Matthieu Haefele, Leon Kos, Pierre Navaro, and Eric Sonnendrücker, “Euforia integrated
visualization,” in PDP 2010 - The 18th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (Pisa, Italy, 2010) pp. 498–502.

[5] “VisIt official homepage,” http://visit.llnl.gov/ (2011).

[6] G. Manduchi, F. Iannone, F. Imbeaux, G. Huysmans, J.B. Lister, B. Guillerminet, P. Strand,
L.-G. Eriksson, and M. Romanelli, “A universal access layer for the integrated Tokamak
Modelling Task Force,” 6th IAEA Technical Meeting on Control, Data Acquisition, and
Remote Participation for Fusion Research, Fusion Engineering and Design 83, 462–466
(2008).

[7] Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram Ludascher, and Steve
Mock, “Kepler: An extensible system for design and execution of scientific workflows,” in
SSDBM ’04: Proceedings of the 16th International Conference on Scientific and Statistical
Database Management (IEEE Computer Society, Washington, DC, USA, 2004) p. 423,
ISBN 0-7695-2146-0.

[8] Hans-Joachim Klingshirn, Adaptive grids and numerical fluid simulations for scrape-
off layer plasmas, Ph.D. thesis, Technical University Muenchen (2010), http://
mediatum.ub.tum.de/node?id=970446.

Proceedings of the International Conference Nuclear Energy for New Europe 2011, Bovec, Slovenia, Sept.12-15, 2011

http://www.mdsplus.org
http://www.hdfgroup.org/
http://dx.doi.org/10.1016/j.cpc.2010.02.00
http://dx.doi.org/10.1109/PDP.2010.76
http://dx.doi.org/10.1109/PDP.2010.76
http://visit.llnl.gov/
http://dx.doi.org/10.1016/j.fusengdes.2007.08.021
http://dx.doi.org/10.1109/SSDBM.2004.44
http://dx.doi.org/10.1109/SSDBM.2004.44
http://mediatum.ub.tum.de/node?id=970446
http://mediatum.ub.tum.de/node?id=970446

	Introduction
	Time dependent visualization
	Visualization components
	Conclusion and Future work

