
PEG-PIC and PEG-TC simulation codes∗

(a suite of plasma engineering R&D software)

Janez Krek1, Nikola Jelić1,2,3,4, Leon Kos1, Jože Duhovnik1

1LECAD Laboratory, Faculty of Mechanical Engineering,
University of Ljubljana, SI-1000 Ljubljana, Slovenia

2Association EURATOM-ÖAW, Institute for Theoretical
and Computational Physics, TU Graz, A-8010 Graz, Austria

3Association EURATOM-ÖAW, Institute for Theoretical Physics,
University of Innsbruck, A-6020 Innsbruck, Austria

4TC Semto, SI-1000 Ljubljana, Slovenia

Ljubljana, december 2012

∗PEG-PIC and PEG-TC are LECAD codes which are used in investigations of fusion-
related, technology-oriented, laboratory and space plasmas. Particular ongoing applications
of this codes are investigations on gas discharge tubes (gas arresters), supported by Slovenian
Research Agency (ARRS), and fusion boundary conditions.

Contents

1 Introduction 3

2 Revised and updated PEG-PIC simulation code 3
2.1 Enable writing history of dump (.dmp) and data (.dat) files . . . 3
2.2 Switch “origdmp” with new values fot output files 4
2.3 Output of data for phase-space diagrams 5
2.4 Variable reflection coefficient at boundaries 5

2.4.1 Program source . 5
2.5 Two values in output file for creating movies 7

3 Set of programs/scripts for post-processing tasks 7
3.1 Drawing/displaying distribution functions 7

3.1.1 Input parameters . 7
3.1.2 Format of input file . 7
3.1.3 Output results . 9

3.2 Comparing (analysis) of values from two or more time steps . . . 9
3.2.1 Preparing data before analysis 9
3.2.2 Preparing graph in gnuplot 10
3.2.3 Example of preparing file for plotting 10

3.3 Defining number of sets in joined file 11

4 New grid-less simulation code PEG-TC 11
4.1 Treecode (TC) method . 11
4.2 TC method in PIC simulation loop 13
4.3 Running the code and processing results 13
4.4 PEG-TC source code . 15

5 Discussion 15

6 Acknowledgments 16

7 Appendix A 17

2

Abstract

For use in our current and future projects, we developed two simulation codes
(software applications) to help us perform computer simulations in fields of plas-
mas. First is PEG-PIC (Plasma Engineering Group - Particle-In-Cell), which is
based on already proven plasma PIC simulation codes [6], and PEG-TC (Plasma
Engineering Group - TreeCode), which is based on treecode algorithm [1] and
is presenting a grid-less method for computing parameters in various plasma-
related simulations [3].

1 Introduction

In this report we present two simulation codes (PEG-PIC and PEG-TC) that
were developed during our colaboration on various plasma related projects.
PEG-PIC is based on variety of simulation codes, mainly on BIT1 [4] and Berke-
ley’s XPDP1 and fall into Particle-In-Cell (PIC) category of simulation codes.
Main advantages of PEG-PIC code, not yet available in other free accessible
codes, are variable reflection coefficient at boundaries) and easier and faster
post-processing of simulation results.

PEG-PIC code is based on stable and well proven code. With our additions
and updates, it is still stable and ready for simulations. We also added additional
scripts and programs that help users of PEG-PIC process results more efficiently.

New object oriented simulation code (PEG-TC) was developed to test a
treecode method. Treecode was first introduced by Barnes and Hut [1] on field
of astrophysics to simulate impact of gravitational forces on planets. Main
reason to develop new code was ability to explore the flexibility and power of
grid-less method, which is essential part of new code. Flexibility of the method is
that one does not need to define ant grid in advance (before start of simulation)
and to define number of levels in tree, and with this number of nodes in tree.

PEG-TC code is in early stages of development and has to go through a
series of testing before it will be ready for use in (general) simulation community.
PEG-TC code successfully run some simple cases with success and we are are
satisfied with code behaviour. We plan to do more test and only after more
complicated tests, we will be able to give final mark about code.

2 Revised and updated PEG-PIC simulation code

2.1 Enable writing history of dump (.dmp) and data (.dat)
files

In addition to original functionality of program to write dump and data files
in given intervals, defined in input (configuration) file, we added an option to
save history of written files. Often simulations take days or even weeks to finish
and it is very useful to be able to monitor changing of values during simulation.
Here history of dump and data files steps-in and enable this. If values do not
go in wanted direction, one could stop the simulation, change input parameters
and start the simulation again and thus saving a lot of time in earlier phases of
simulation where initial parameters are defined.

We implemented this functionality in two steps:

3

• first we added a step number to generated dump and data file

• we created break-down version of data file, separate file for each block in
original file

First we added current simulation step to both dump and data file names
and program generates output files with following names:

• dat file: < input− file− name >-000000.dat

• dmp file: < input− file− name >-000000.dmp

where < input− file− name > is name of input file and 000000 is replaced
with step number. Sequence of steps go from 0 to number of steps defined in
input file.

In second step, we generated separate files for each block in original history
data file. Source file changed: dmprest.c. Now program writes each section of
DAT files into separate file to enable easier creation of plots from files. Files
that are created are:

• <X>-000000-all.dat
cumulative file

• <X>-000000-block1.dat
block 1 (t(/dt) = 120000, n grid, V par (if B>0),)

• <X>-000000-block2.dat
block 2 (t/4 pow x, N(t), LHS flux, RHS flux, LHS Eflu.....)

• <X>-000000-block3-sp00a.dat
block 3 for particle 1 (E, f(E) LHS Wall, f(E) RHS Wall, f1(E), f2(E))

• <X>-000000-block3-sp00b.dat
block 3 for particle 1 (v, f1(v), f2(v), ...)

• <X>-000000-block3-sp01a.dat
block 3 for particle 2 (E, f(E) LHS Wall, f(E) RHS Wall, f1(E), f2(E))

• <X>-000000-block3-sp01b.dat
block 3 for particle 2 (v, f1(v), f2(v), ...)

• <X>-000000-block4.dat
block 4 (Freq., Amp LHS Pot, Amp RHS Pot)

where <X> is name of input file name. Putting all files
<input-file-name>-block* together results in fie <input-file-name>-000000-all.dat.
With dividing file into many files, cumulative file (file that hold all data) is re-
named to <input-file-name>-000000-all.dat.

2.2 Switch “origdmp” with new values fot output files

We added new values for configuration parameter origdmp: in addition to
existing values 0 and 1, values 2 and 3 were added to support writing additional
values into output file for drawing phase-space diagrams.

Switch origdmp in input file controls type of dump file (1=binary, 0=ASCII).
All possible parameter values are:

4

0 = create ASCII dump file

1 = create binary dump file

2 = create ASCII dump files with values (coordinates) with x, Vx, Vy, Vz
values that can be used directly for plot drawing

3 = create binary dump file and ASCII files for ph-space diagram

2.3 Output of data for phase-space diagrams

New values for switch origdmp were added to enable of adding values to output
files for drawing phase-space diagrams. PEG-PIC can create ASCII files with
values for plotting phase-space diagrams for step. Files are created at the same
steps as dump files (controlled by dmpstep).

Files are named as <input-file-name>-sp00-000000-ph space.dat, where:

• sp00 - defined species (00-first species, 01-second, etc.)

• 000000 - current step (sequence number for file)

Program also creates cumulative file for each species. File is named <input-file-name>-sp00-all-ph space.dat

Putting all files <input-file-name>-sp00-00*-ph space.dat together results
in file <input-file-name>-sp00-all-ph space.dat.

2.4 Variable reflection coefficient at boundaries

PEG-PIC enables user to define variable reflection value on left and right bound-
ary through new switches in input file. New switches define reflection coefficient
for left and right boundary as follows:

• gridref l0 - initial value for left side

• gridref lsramp - how coefficient is changed with time - left side

• gridref r0 - initial value for right side

• gridref rsramp - how coefficient is changed with time - right side

Value of coefficient is calculated at given point in time using following equa-
tion: coeff = coeff0 + sizeramp * t, where:

• coeff0: is initial value

• sizeramp: defines how coefficient is changed in relation to time

• t: time

Values for coefficients are written into data files along with other values for
species, into ”block2” DAT file.

2.4.1 Program source

To implement needed functionality and options added to configuration file, we
changed source code in function adjust() that is part of file padjus.c. Follow-
ing source code demonstrates usage of reflection parameters in simulation.

5

Initialization of values is done first time function is executed.

for (i s p =0; i sp<nsp ; i s p++) {
i f (i n j e c t [i s p]) {

i +=1;
}

/∗ de f ine i n i t i a l va lues for gr id r e f l e c t i o n on l e f t and r i g h t s ide
∗/
g r i d r e f l [i s p] = g r i d r e f l 0 [i s p] ;
g r i d r e f r [i s p] = g r i d r e f r 0 [i s p] ;

}

Calculating current value for reflection coefficient:

for (i s p =0; i sp<nsp ; i s p++) {
i f (d i n j [i s p]) {

jwa l l [i s p] =0.0;

i f (s low) { /∗ i n i t i a l i z e f () d iagnos t i c arrays ∗/
for (s=0; s<NDP; s++) {
for (i i =0; i i <nbin [i s p] ; i i ++) fe mid [i s p] [s] [i i] = 0 ;
for (i i =0; i i <nb in fvx [i s p] ; i i ++) f vpa r [i s p] [s] [i i] =0;
}

}
}

/∗ ca l cu l a t e current va lues for gr id r e f l e c t i o n on l e f t and r i g h t s ide
∗/

g r i d r e f l [i s p] = g r i d r e f l 0 [i s p] + g r i d r e f l s r amp [i s p] ∗ t ;
g r i d r e f r [i s p] = g r i d r e f r 0 [i s p] + g r i d r e f r s r amp [i s p] ∗ t ;

}

Absorb or reflect current particle is calculated in following code excerp-
tion - for left and right boundary,

i f (f rand () > g r i d r e f r [i s p]) {
/∗ on RIGHT boundary : p a r t i c l e i s absorbed ∗/
nnp = np [i s p] −1;
x [i s p] [i] = x [i s p] [nnp] ;
vx [i s p] [i] = vx [i s p] [nnp]
vy [i s p] [i] = vy [i s p] [nnp] ;
vz [i s p] [i] = vz [i s p] [nnp] ;
np [i s p] −=1;

} else {
/∗ pa r t i c l e i s r e f l e c t e d back from boundary ∗/
x [i s p] [i] = 2∗xnc − x [i s p] [i] ;
vx [i s p] [i] = −vx [i s p] [i] ;

}

. . .

. . .

. . .

i f (f rand () > g r i d r e f l [i s p]) {
/∗ on LEFT boundary : p a r t i c l e i s absorbed ∗/
nnp = np [i s p] − 1 ;
x [i s p] [i] = x [i s p] [nnp] ;
vx [i s p] [i] = vx [i s p] [nnp] ;
vy [i s p] [i] = vy [i s p] [nnp] ;
vz [i s p] [i] = vz [i s p] [nnp] ;
np [i s p] −= 1 ;
jwa l l [i s p] += q [i s p] ;

} else {
/∗ pa r t i c l e i s r e f l e c t e d back from boundary ∗/
x [i s p] [i] = −x [i s p] [i] ;
vx [i s p] [i] = −vx [i s p] [i] ;

}

6

2.5 Two values in output file for creating movies

In file for movies (...movies.txt), two values are added to each line in file. These
values are potential, first is averaged (as all other values), second values is
nonaveraged value of potential. Values for potential are written to the end of
line, to columns 12 and 13.

3 Set of programs/scripts for post-processing tasks

We developed set of programs/scripts to make post-processing of results faster
and easier. For larger simulations, simulation codes usually run on cluster com-
puters, e.g. HPC Prelog (that is installed on Faculty of mechancal engineering,
University of Ljubljana), and intermediate and final results are save into files.
These files are processed during simulation or at the end of simulation.

3.1 Drawing/displaying distribution functions

We developed wrote short program for preparing data for drawing distribution
functions. Program is written in C and should compile and run on any platform
that have C compiler. Program was tested on Linux OS. Program automatically
defines lower and upper limit for velocity in defined direction (vx, vy or vz).

3.1.1 Input parameters

All parameters for running the program are given via parameters in command
line. Input parameters are:

input file - input file from which to read data

vel - which velocity to use for making histogram: vx, vy, vz

K - number of cells in velocity direction

x1 - lower limit of area of interest

x2 - upper limit of area of interest

M - number of strips in area of interest, each is ∆x wide

∆x - width of strip

3.1.2 Format of input file

Data in input file is arranged in a way that x coordinate is running along rows,
data for each value of x is written in columns. Columns are expected to have
following values:

Example of input file (few lines):

1 0.007865 -5215.25 -0 0

1 0.028205 5236.34 0 0

1 0.015475 1199.52 0 0

1 0.014722 -2238.04 -0 0

7

vx,max

vx,K

vx,3

vx,2

vx,K−1

vx,j

vx,1
vx,min

x∆ x∆ x∆ x∆x1xmin x2 xmax

x∆ = width of strips

K = number of cells in each strip
M = number of strips xmaxxmin

vx,maxvx,min

x2x1

,
, } = area of data in input file

= limits of area of interest,

strip 1 strip 2 strip M. . .

Figure 1: Explanation of input parameters.

column num mark description

1 seq not used; must be present, integer number
2 x position in x direction
3 vx velocity in x direction
4 vy velocity in y direction
5 vz velocity in z direction

8

1 0.004000 -8702.17 -0 0

1 0.008804 3171.99 0 0

1 0.023986 -755.435 -0 0

3.1.3 Output results

Program displays results to standard output (screen, console). The amount of
output is small and results can be copied from screen or redirected to file for
further use. Histogram results are displayed in table (array) form, where each
row represent data for one cell in velocity direction. First column define velocity
value in the middle of the cell and other columns show number of values at given
velocity in each strip - each strip is displayed in separate column.

Example of output:

Results:

-39309.7 7 1

-30570.8 156 111

-21831.9 2429 1588

-13093 24028 13811

-4354.06 7493 24069

4384.86 1069 3177

13123.8 146 413

21862.7 9 34

30601.6 0 0

39340.5 0 0

3.2 Comparing (analysis) of values from two or more time
steps

Values of variables in simulation at different time steps are written in separate
files. To be able to compare values, they should be in the same file or one should
import values to some statistical or spreadsheet program and combine them
into same sheet/working file. With a few scripts and standard Linux programs,
drawing graphs can be dome automatically, without any manual work.

3.2.1 Preparing data before analysis

After simulation data is written into result files (data files), first step is to
extract values (columns) of interest from each dump file.

Steps:

1. first extract columns of interest from dump files into separate file. Exam-
ple: dump file is test.inp-sp01-000000-ph space.dat and we are interested
in columns 3 and 7.
Commend is (write in same line):

cat varrefl.inp-sp01-000000-ph_space.dat |

awk ’{ print $1 " " $7 " " $3}’ > file_000.dat

cat varrefl.inp-sp01-000100-ph_space.dat |

awk ’{ print $1 " " $7 " " $3}’ > file_100.dat

9

cat varrefl.inp-sp01-000200-ph_space.dat |

awk ’{ print $1 " " $7 " " $3}’ > file_200.dat

2. now join columns in three files into one (write in same line):

join file_000.dat file_100.dat file_200.dat > file_0-100-200.dat

Joined file (file 0-100-200.dat) has now 7 columns, which are as follows:

Column no. value in column
1 column no. 1 in all files (it is the same)
2 column no. 3 from file file 000.dat
3 column no. 7 from file file 000.dat
4 column no. 3 from file file 100.dat
5 column no. 7 from file file 100.dat
6 column no. 3 from file file 200.dat
7 column no. 7 from file file 200.dat

Now it is possible to import final file (file 0-100-200.dat) into any program
for producing graphs and analyze or display differences between columns, which
represent same variables at different points in time (run).

3.2.2 Preparing graph in gnuplot

From joined file (file 0-100-200.dat) it is straightforward to display graph(s)
using gnuplot tool.

plot "a.dat" using 1:3 with lines , "a.dat" using 1:4 with lines

3.2.3 Example of preparing file for plotting

Here is an example of preparing data file for drawing graphs for case with 250
time steps. Values from each time step is written into separate ASCII dump
file.

First we join all block1 dump files (from each time step) into single large
file. Each file is appended to previous one “from side” - columns are added to
previous file. Final file has same number of rows as source files and number of
columns is increased.

To prepare data for plotting graphs, we have to calculate average values from
all time steps for all x positions in file (rows). At the same time, we will extract
only portion of data.

To extract and calculate average for values vx, n, T, E - the shell (bash/sh)
script is as follows:

awk ’{ n=400. ; a = 0; b = 0; c = 0; d = 0; e = 0; f = 0; for (i = 0; i < n; i++) {

a += $(3+i*12); b += $(8+i*12); f += $(2+i*12);

c += $(4+i*12); d += $(9+i*12); e += $(12+i*12);

};

print $1 " " a/n " " c/n " " b/n " " d/n " " e/n " " f/n;

}’ joined_block1_file.dat > results01.txt

where number 400 represents number of time steps (sets of data = 12 * 400
columns) in final (joined) file.

10

3.3 Defining number of sets in joined file

Sometimes it is difficult to remember how many time steps were used to produce
joined file (block1.dat) - specially in cases when one did not work with files for
a long time.

In this case, small shell script comes in very handy. Script calculates num-
ber of sets in joined file (= number of time steps). With this information,
regenerating data for graphs is easy.

#! / bin / sh

COLS IN SET=12
COLS BEGIN=1
CHECKROW=2

i f [−z ”$1”] ; then
no f i l e was g iven
echo
echo ”Usage : $0 < f i l e to check> [in which row to check] ”
echo
e x i t 1

else

save f i l e name for l a t e r use
FILE=$1

f i

i f [! −z ”$2”] ; then
i f second parameter i s given , i t ’ s row in which we should check

number o f s e t s
CHECKROW=$2

f i

get number o f columns in given l ine

COLS=‘head −$CHECKROW $FILE | t a i l −1 | sed −r ” s /\ s+/ /g” | sed ” s /
/\n/g” | wc −l ‘

c a l c number o f s e t s
SETS=$ ((($COLS − $COLS BEGIN) / $COLS IN SET))

echo ”There are $SETS s e t s in l i n e in f i l e $FILE (checked in l i n e
$CHECKROW) . ”

4 New grid-less simulation code PEG-TC

To eliminate the need to define grid in our simulations, we decided to try to
adopt treecode algorithm, developed by Barnes and Hut in 1986 [1] to field of
our research. Simulation code PEG-TC was developed mainly from ground-up,
but some parts were taken from other simulation codes, mainly from oopd1 [5]
(Berkeley based 1D simulation code). From oopd1, we adopted structure and
content of input file (text file divided into blocks).

4.1 Treecode (TC) method

Basic idea behind TC algorithm is to replace particle-to-particle (P2P) interac-
tion with particle-to-cluster (P2C) interactions in a such way, that we reduce
in number of necessary interactions (calculations) required without making to
much error. With reduced number of clusters in comparison to number of
particles, number of required iterations (and thus required simulation time) is
reduced. Number of iterations for calculating interaction between particles is in

11

range of O(N2), with the use of TC method, number of interactions particle-
cluster falls in range of O(N logN) - this is a huge reduction in number of
required calculations. In current plasma simulations, where number of particles
is in order of 1022 (or 1017 super particles), number of interactions particle-
particle is large even for today’s super computers, or at least computers that
are usually used to run simulations.

One of the most important parts of treecode method during computation
is decision when to use P2P and when to use P2C interaction. In process of
force computing, cluster of particles are replaced with “virtual particle” that
is positioned in center of cluster and has charge equal to sum of charges of all
particles in cluster (figure 2):

qC =

NC∑

j=1

qj ; xC =
1

NC

NC∑

j=1

xj (1)

Figure 2 present situation of computing force on particle i in lower left corner
of the square caused by particles in blue circle (cluster). This case be done in
two ways:

• P2P: compute and sum forces caused by all particles in cluster to particle
i

• P2C: compute force caused by whole cluster to particle i, when whole
cluster is taken as single particle.

P2P interaction is used for all clusters that are close to particle, for clusters
“far away” from particle, P2C interaction is used. Limit value, when to use P2P
or P2C interaction is defined in input file via parameter p2cRatio (listing on
figure 5).

r
R

< α

j = 1...N C

R

r

Condition:particle i

cluster of points

center point

Figure 2: How clusters are defined and used in force calculation.

12

4.2 TC method in PIC simulation loop

TC method can be used in PIC simulation to replace some steps in main PIC
simulation loop - figure 3 shows steps in main PIC loop that are replaced with
TC method. New (with TC method) PIC main loop is shown on figure 4.
Because in each time step (in each loop) in PIC simulation new particles are
injected into simulation domain, tree has to be generated again.

Integration of equations
of motion

Fi v’i xi
absorbtion, etc.)
boundaries (emmision,
Particle loss/gain on

Integration of field
equations on grid

(, J)ρj j (E , B)j j

fields to particles
Interpolation of grid

(E , B)j j Fi

Monte Carlo collisions
of motion

v’i vi

Interpolation of particle
sources to grid

(, J)ρj j(x , v)ii

t∆

Figure 3: Steps in main PIC loop that are not necessary when using treecode.

absorbtion, etc.)
boundaries (emmision,
Particle loss/gain on

Generate tree for current
particle positions

t∆

Fi, total(x , v)ii

Calculation of forces
via treecode (TC)

TC

Integration of equations
of motion

xiv’iFi, total

Figure 4: Simple PIC main loop with treecode.

Compared to original treecode method we added one extra parameter with
which one can limit tree depth. In input file, it is possible to define maximal
number of particles in cluster - not necessary one (how it is defined in original
algorithm).

4.3 Running the code and processing results

PEG-TC simulation code does not have any graphical user interface and utilize
input files for defining simulation parameters. Input files are ordinary textual
files that can be created and manipulated with various text editors. Structure

13

of input file looks a lot like C program and is based on the input file of another
Berkeley based simulation code - OOPD1. With original input file, it shares
most of main blocks, but also introduces one new block - block to define treecode
parameters (see example on figure 6.

PIC-TC recognize following blocks in input file:

• Variables
Defines variables and theirs values for use later in input file.

• Species
Defines properties of species. Input file can have multiple Species blocks.

• Treecode
Defines parameters for computation via treecode method.

• SpatialRegion
Defines properties of simulation partial region, such at simulation dt, num-
ber of steps, cross section area, boundary charges, etc.

• Grid
Defines grid parameters for computation. Grid is only used to compute
potential values on grid. Block Grid has to be inside block SpatialRe-
gion.

• InitLoad and Source
Blocks define particle initial load and source of particles for use inside each
computational step. Blocks can have multiple blocks Particles. Blocks
are not mandatory.

• Particles
Defines properties of particles inside InitLoad or Source blocks. Block
define particle species, inject velocities and positions, their distribution,
etc. Block has to be inside InitLoad or Source.

• Diagnostics
Defines where to save simulation results and holds blocks that define which
simulation parameters to write to output files.

• PhaseSpace
Defines parameters for writing phase space data to output file: when to
write it (at which simulation times), name of file, etc.

• PotentialProfile
Defined parameters for writing potential values to output file.

Newly introduced block Treecode enables one to define following values:

• N0
Parameter N0 defines maximal number of particles in each tree node. To
follow original treecode algorithm, one can define N0 = 1.

• nodeLengthRatio
Parameter nodeLengthRatio defines maximal tree node size compared
to system size. Value of parameter can range from [0 → 1]. Value of 0
disabled checking of node size.

14

TreeCode
{

N0 = 10 ;
nodeLengthRatio = 0 . 1 ;
p2cRatio = 0 . 0 2 ;

}

Figure 5: Block in input file for defining parameters for treecode method.

• p2cRatio
Parameter p2cRatio defines limit value for ratio between tree node size
(also cluster size) and distance between certain point and center of node
(cluster) (see figure 2). During computation, if ratio for given particle and
cluster is below parameter value, particle-to-particle is used, otherwise
particle-to-cluster interaction is used for computation of force.

Two parameters (N0 and nodeLengthRatio) limit tree node size, p2cRatio
influence computational speed and simulation error. Added block in in input
file is displayed on figure 5.

Simulation results are saved into series of output files, as defined in input
file in block Diagnostics. Post-processing of results is done with series of Bash
scripts, tailored to output format generated by PEG-TC. Scripts enable users
to generate images and movies of potential profiles, phase-space diagrams, com-
parison of values at different simulation steps, etc. More sophisticated results
analysis could be done using one of professional chart or statistical programs.

4.4 PEG-TC source code

Source code for PEG-TC simulation code is not available for download due to it’s
young development stage, far from “production ready” state and the fact that
requires some “fine-tuning” of parameters to produce usable results. Because
of this, it is available upon request - sent to email janez.krek@lecad.fs.uni-lj.si.

5 Discussion

In this work we present revisions and updates we made on existing PEG-PIC
code to implement functionality we need for current project. Because simulation
code is stable, our focus was on adding missing functionality and development
if miscellaneous tools that make use of PEG-PIC code easier and time effec-
tive. With this in mind, we developed few simple but effective scripts (support
programs) to enable users of PEG-PIC easy post-processing. Post-processing
is getting more and more time demanding as simulation codes usually run on
clusters and can produce large quantity of results, usually save in text or binary
files.

Second part of our work on field of development simulation codes was de-
velopment of new PEG-TC simulation code which is based on not so commonly
used tree-code method for computing forces between particles in system. Tree-
code method was first presented in 1986 and is well proven in multi-body systems
[2] (e.g. astrophysics). With most noticeable property of method is grid-less
model - there is no need to define grid in advance which saves some time in

15

cases where we do many simulations. Tree-code method is specially effective
in case with low density of simulation gas and small number of particles - in
this cases we expect substantial speed increase compared to PEG-PIC. Disad-
vantage of the code at the moment is its development stage. Code is in early
development stage and is practically untested and unproven when compared to
other simulation codes, e.g. PEG-PIC, BIT1, xpdp1, oopd1, etc.

Next steps in development of both simulation codes will be to test the codes
on Prelog HPC regarding speed and code stability. Despite early development
stage of PEG-TC, we believe that code will be stable and will bring considerable
speed gains in certain simulation cases.

6 Acknowledgments

This work is supported by Slovenian Ministry of Science and Technology by
grant No L2-3652 ”Raziskava in razvoj integriranih prenapetostnih zaščitnih
naprav na osnovi plinskega odvodnika (GDT) v smeri zanesljive miniaturizirane
tehnične rešitve (MINIGDT)”.

This work was supported by the European Commission under the Contract
of Association between EURATOM and the Austrian Academy of Sciences. It
was carried out within the framework of the European Fusion Development
Agreement. The views and opinions expressed herein do not necessarily re-
flect those of the European Commission. This work was also supported by the
Austrian Science Fund (FWF).

References

[1] J. Barnes and P. Hut. A Hierarchical O(NlogN) Force-Calculation Algo-
rithm. Nature, 324:446–449, December 1986.

[2] A. J. Christlieb, R. Krasny, and J. P. Verboncoeur. A treecode algorithm
for simulating electron dynamics in a penning-malmberg trap. Computer

Physics Communications, 164(1-3):306–310, 2004.

[3] K. Matyash, R. Schneider, R. Sydora, and F. Taccogna. Application of a
grid-free kinetic model to the collisionless sheath. Contributions to Plasma

Physics, 48(1-3):116–120, 2008.

[4] D. Tskhakaya and R. Schneider. Optimization of pic codes by improved
memory management. J. of Comp. Phys., 225:829–839, 2007.

[5] J. P. Verboncoeur, A. B. Langdon, and N. T. Gladd. An object-oriented
electromagnetic PIC code. Computer Physics Communications 87, 1995.

[6] John P. Verboncoeur. Partice-in-cell techniques. Technical report, Depart-
ment of Nuclear Engineeringn, University of California, Berkeley, CA-94720-
1730, May 2007.

16

7 Appendix A

Input file for PIC-TC simulation code is regulat textual file that enables to
define all simulation parameters. Example of input file is shown on figure

test matlab PTSG case . inp −−
{
Spec i e s // the f i r s t spec i e s
{

name = e l e c t r o n s
q =−1.6E−19 // [C] spec i e s charge
m = 9.1E−31 // [kg] spec i e s mass ; can be var i a b l e

}

Spat ia lReg ion
{

dt = 1E−11 // [s] s imulat ion time step
ns = 2000 // [−] number of s t eps to run
area = 1e−4 // [m2] cross sec t ion of region
p2c = 1 // [−] number of r ea l p a r t i c l e s per computer p a r t i c l e 1 comp

. p a r t i c l e = p2c ∗ rea l p a r t i c l e s
V0 = 0.0 // [V] charge on l e f t boundary
V1 = 0.0 // [V] charge on r i g h t boundary

Grid
{
x0 = 0 . // [m] dimension of region −− s t a r t len
x1 = 0.06 // [m] dimension of region −− end len
ng = 500 // [−] number of gr id c e l l s
}

} //ends Spatia lRegion

TreeCode
{

N0 = 30 ;
nodeLengthRatio = 1e−6;
p2cRatio = 0 . 2 ;

}

Diagnos t i c s
{

d i r e c t o r y = ./ data

PhaseSpace
{

f i l e = phase−space %07d . dat
n s tep = 10 // wri te data every 10 s teps

}

Po t e n t i a l P r o f i l e
{

f i l e = po t e n t i a l %07d . dat
f i l e s = 50
d i s ab l ed // d i s a b l e d iagnos t i c s

}
}
}

Figure 6: Small example of input file.

17

	Introduction
	Revised and updated PEG-PIC simulation code
	Enable writing history of dump (.dmp) and data (.dat) files
	Switch ``origdmp'' with new values fot output files
	Output of data for phase-space diagrams
	Variable reflection coefficient at boundaries
	Program source

	Two values in output file for creating movies

	Set of programs/scripts for post-processing tasks
	Drawing/displaying distribution functions
	Input parameters
	Format of input file
	Output results

	Comparing (analysis) of values from two or more time steps
	Preparing data before analysis
	Preparing graph in gnuplot
	Example of preparing file for plotting

	Defining number of sets in joined file

	New grid-less simulation code PEG-TC
	Treecode (TC) method
	TC method in PIC simulation loop
	Running the code and processing results
	PEG-TC source code

	Discussion
	Acknowledgments
	Appendix A

