
Fakulteta za strojnǐstvo
Univerza v Ljubljani

Podiplomski študij, 1. seminar

PIC simulations and a gridless treecode method -
review

(PIC simulacije in brezmrežna metoda “treecode” - pregled)

Avtor:
Janez Krek

Mentor:
prof. Jože Duhovnik

Ljubljana, 30.10.2009

Contents

1 Introduction 4

2 Computer simulations 5
2.1 Fluid plasma models . 5
2.2 Kinetic plasma models . 6
2.3 PIC simulations computer programs . 6

3 Treecode (TC) method 8
3.1 Background . 8
3.2 Creating tree . 9
3.3 Example of generated tree in 2-D . 10

4 Treecode model in PIC simulation 11

5 Conclusion 14

3

1 Introduction

Plasma modeling is an attempt to describe a physical device and processes inside plasma with
mathematical terms [3],[1],[6]. The mathematical model is later transferred via algorithms to
various computer programs which are used to simulate processes inside plasma. Computer
simulations are efficient design tool for providing accurate performance predictions in plasma
physics applications. They base on various models, which describe plasma and processes in
plasma in different ways and are divided into two main areas: fluid and kinetic models. Fluid
plasma description represents macroscopic model of representation of plasma, where kinetic
model try to model plasma from opposite side - to describe motion of single particle in plasma.

Particle-in-Cell (PIC) programs (codes) employ kinetic model of plasma description as base
for simulation. PIC techniques grew from electron trajectory simulation in 1950s [3],[9] and
were developed since then: first with employing more that few particles, then to formalize
PIC method, adding collisions and using objected-oriented technology for programming [10].
Development of personal computers and easy access to them also helped in development of PIC
codes - almost everybody could have a PC and could do their own PIC simulation, without any
need on waiting on computer time in computer centers. Despite today’s modern and powerful
computers, PIC simulations still take a long time to run. Models are describing more and
more processes inside plasma and required computer resources are increasing. Currently, PIC
simulations are applied to wide set of problems [9],[8]: plasma display panel, fluorescent lamp,
low-T processing plasmas, high power microwave devices, magnetic fusion, heavy ion fusion,
space plasmas, basic plasmas, etc.

Treecode method represent a way to reduce number of necessary calculations when calcu-
lating influences (forces) between particles in plasma. Because number of particles in plasma is
usually high (in order of 1022 particles or 1017 super particles), number of necessary calculations
is high and is in range of N2 (where N is number of particles) [2]. With using treecode method,
number of necessary calculations can be reduced to range of N logN . Another advantage of
treecode is the fact that is grid-less - method does not relay on fixed (or defined) grid. This
means that we have more tree nodes in areas with high particle densities and less nodes in other
areas.

Why we should implement treecode method into PIC simulation program, when calculating
forces between particles is only part of PIC simulation loop? Because we are running simulations
with large number of particles, difference in number of calculations between N2 and N logN is
huge and creating tree takes less than that difference. Some testing have been done [4] [5], but
currently not showing promising side of treecode method.

4

2 Computer simulations

Computer simulations are efficient design tool for providing accurate performance predictions
in plasma physics applications. Computer simulations base on various models, which describe
plasma and processes in plasma in different ways. The models generally describe the conser-
vation of mass, energy, charge and also transformations among chemical species. Equations
for such models can be derived fundamentally from the general Boltzmann equation describing
probability distributions of individual species in velocity space, subject to collisions and external
forces and from the set of Maxwell equations describing electro-magnetic field interactions.

Models for computer plasma simulations can be divided into several different ways, includ-
ing the model dimensionality (complexity), use of kinetic or fluid approach to describe the
plasma-governing equations, which processes model takes into account and others. Computer
simulations of plasma can be divided into two main areas, based on how they describe plasma
[3]:

• fluid description: MHD model, wave equations

• kinetic description: Vlasov, Fokker-Planck codes; particle codes

Two main descriptions differ in a way they describe plasma and how they are trying to
approach problems in plasma description. Many modern simulations programs incorporate both
fluid and kinetic model in plasma simulation. Hybrid models may treat electrons as fluid, using
fluid model to simulate them, and treat ions as particles, using kinetic model for simulation of
ions.

2.1 Fluid plasma models

Fluid plasma description represents macroscopic model of representation of plasma. Model is
closer to experiments as kinetic model, because it describes what can be observed from outside.
Similar as in experiment, where we observe what is happening with plasma but we do no pay
attentions for all small details and processes inside plasma. Aim of fluid model is to represent
plasma independent of what happens on molecular level - one assumption is that velocities
of particles inside volume element can be neglected. With this, fluid variables are functions
of position and time. This model is closer to experiments as in experiment we seldom make
measurements at microscopic level. It is similar to fluid representation of neutral gas and
fluid, extended to include specific behaviour of plasma and processes inside plasma. Fluid (or
continuum) plasma models reduce the computational complexity by averaging velocity space
effects.

In many cases, plasma could be modelled as one-fluid with magnetohydrodynamic (MHD)
equations. The fundamental assumption is that fields and fluid fluctuate on the same time and
length scale - on scale of slower and heavier ions. In more advanced models, to support rapid
wave fluctuations in plasma (due to the fact that electrons are much faster than ions), plasma is
treated as two-fluid in plasma wave equatons. Like MHD equations, these are also macroscopic
equations, but the assumption under them is quite different.

In fluid model of plasma description, one tries to numerically solve magnetohydrodynamics
(MHD) equations of plasma, assuming transport coefficients. The fluid (or continuum) equations
consist of three main equations, which describe the conservation of particles, momentum and
energy for particular particle species. These equations work with quantities that are averages
over all particle velocities in a small volume element. Plasma fluid calculations are often valid
even through the main free path of the plasma particle is larger than the volume element of the
fluid.

5

2.2 Kinetic plasma models

Kinetic models try to describe the plasma from opposite way than fluid models. Kinetic models
describe plasma from microscopic level, starting with description of motion of a single particle.
Because they are dealing directly with various particles in plasma they are potentially the
most power full models for studying of processes in plasma and basic equation can become quite
complex and difficult to solve. With large number of particles, usually present in plasma, kinetic
models require huge computational resources regarding memory requirements, CPU power and
also in computational time.

For kinetic models to better describe plasma, all physical properties of plasma are defined in
six-dimensional space (positions and velocities) and time. Instead of defining density of particles
at given position and time, we define distribution function that is defined in (~r, ~v) and time.

In kinetic description one is trying to solve particle interactions through electromagnetic field.
This can be done by numerically solve kinetic equations (Vlasov, Fokker-Planck equations) or
by “particle” simulation in which one computes motion of plasma particles (PIC codes).

2.3 PIC simulations computer programs

Particle-in-Cell (PIC) simulation programs employ kinetic model of plasma description as a base
for simulation. PIC techniques grew from electron trajectory simulation in 1950s. Early codes
employed only few particles, but later in 1960s, PIC scheme were developed in Universities and
national laboratories that employed thousands of particles and usually one-dimensional systems.
Main focus was on validating physical and numerical models. Between 1960 and 1980 [3], self-
consistent PIC method was formalized and put into computer code. Theoretical limitation
and methods to overcome those limitations were developed and described more formally. In
1980s, first device models and Monte-Carlo collisions were developed. Those models were in
1990s extended with self-consistent circuit model and improved Monte-Carlo model. PIC codes
(computer codes) were developed using object-oriented techniques and for using on parallel
computers.

Despite today’s modern and power full computers, PIC simulations still take a long time to
run. Typical simulation time for a single iteration of common simulation case are in a range of
1 - 10 seconds. This may seem a very short time, but considering that we need up to 1,5 million
iterations to achieve “stady state”, total simulation times can be up to 50, 60 days.

All PIC simulation applications (programs, computer codes) that base on PIC techniques
have similar main loop - loop that form basics of program/application. Basic steps in every PIC
simulation code are shown in figure 1.

In addition to these basic steps, PIC simulation codes often offers the possibility to simulate
collisions inside plasma, which is quite important, if simulation is performed with high density
plasma (where collisions between particles are more likely to occur).

6

Integration of equations
of motion

Fi v’i xi
absorbtion, etc.)
boundaries (emmision,
Particle loss/gain on

Integration of field
equations on grid

(, J)ρj j (E , B)j j

fields to particles
Interpolation of grid

(E , B)j j Fi

Monte Carlo collisions
of motion

v’i vi

Interpolation of particle
sources to grid

(, J)ρj j(x , v)ii

t∆

Figure 1: Simple main loop for PIC simulations

7

3 Treecode (TC) method

Treecode (TC) method is based on treecode algorithm, which was originally developed to com-
pute gravitational forces in astrophysics [2], and was later also used and developed in details
in fields of fluid and molecular dynamics. There algorithms are currently not used in fields of
plasmas (PIC simulations).

Basic idea behind TC algorithm is to replace particle-particle interaction with particle-cluster
interactions in a such way, that we reduce in number of necessary interactions (calculations)
required without making to much error. With reduced number of clusters in comparison to
number of particles, number of required iterations (and thus required simulation time) is reduced.
Number of iterations for calculating interaction between particles is in range of O(N2), with the
use of TC method, number of interactions particle-cluster falls in range of O(N logN) - this is a
huge reduction in number of required calculations. In current plasma simulations, where number
of particles is in order of 1022 (or 1017 super particles), number of interactions particle-particle
is large even for today’s super computers, or at least computers that are usually used to run
simulations.

TC method is most simple in 1-D space, but can be also extended in a way, that can be
used in 2-D or 3-D space. The difficult part in extension into more dimension is not TC method
itself, but underlying equations that are solved using tree generated with TC method.

3.1 Background

There is no TC method without tree representation of a simulation domain. Tree is composed of
nodes, links between nodes and leafs (figure 2a), with each node can having 0 or more children.
Maximum number of children in each node of a tree is defined by dimensionality of domain, for
which tree is created, and can be up to:

• 2 children for 1-D domain; also called binary trees.

• 4 children for 2-D domain; also called quad-trees.

• 8 children for 3-D domain; also called octrees.

There are nodes in tree that have special names: nodes without children are called leafs
(nodes named a, h, i, etc. on figure 2) and node without parent is called root node (node named
root on figure 2). Tree can be asymmetrical and does not need to be full - there can be nodes
in tree that have only one child (in 1-D space).

Figure 2: Example of tree representation (a) of square domain (b) (image take from [7])

8

3.2 Creating tree

The purpose of TC method is to represent relations (positions) between particles in simulating
domain. On a base of generated tree, PIC simulation method can later perform faster calculation
of forces between particles.

Because TC is similar for 1-D, 2-D and 3-D space, demonstration of tree generation in 1-D
space can be easily extended for generation of trees in more dimensions. Simple flow chart for
tree generation is shown in figure 3 and individual steps are as follows:

1. Node is generated on a base of input parameters: list of particles in simulating domain,
start and end limit of domain (to limit which particles are covered in current node) and
some kind of decision value, if current node should be divided further or division into nodes
stops at current level.

2. In this step positions of particles are checked and particles that fall inside node limits
(given by start and end position) are stored inside node.

3. Now is important decision: should we continue division of node into two (in 1-D space)
children or not.

4. If division into nodes is needed, then two child nodes are created: one for left half of
current node limits and another for right half of nodes domain. If there is situation that
either half of domain does not have particles inside, no child node is created for that half
of domain.

5. At the end, created tree node is returned.

begin

input:
particles, domain limits (start, end)

store particles inside domain

NO

YES

we divide more
should

build node for left half of domain
build node for right half of domain

return node

end

1.

2.

3.

4.

5.

Figure 3: Simple (basic) steps for creating tree

9

One of most important thing in creating tree is to define a condition, when to stop dividing
tree nodes. If condition is too “hard”, tree will have small number of nodes and each node will
have large number of particles inside. On the other hand, if condition is set in a way that small
number of particles is inside tree node (or even to have only one particle in node), number of
nodes will be too high and advantages of TC method will not prevail.

3.3 Example of generated tree in 2-D

The easiest way to demonstrate the generation of a tree is in 2-D space (figure 4).

• All starts from given domain in which we have particles with defined positions. Whole
domain is root node of tree that we are building. Root node holds information about all
particles in system.

• Then given domain is subdivided into 4 sub-domains of equal size (figure 4:level 1). Each
of 4 new sub-domains is node under main (root) node.

• Now process is repeated for all 4 sub-domains: first particles in node are calculated and
if numner of particles is larger that given limited number, then domain is subdivided into
4 domains of equal size. If domain is subdivided, new sub-domains become sub-nodes of
current node.

• This procedure is repeated until there are domains that can be sub-divided into sub-
domains.

level 0 level 2 level 3level 1

tree for
each level

0

1

0

2 3 4

0

21 43

0

21 43

Figure 4: Generation of tree and dividing domain into sub-domains.

10

4 Treecode model in PIC simulation

TC method can be used in PIC simulation to replace some steps in main PIC simulation loop
- figure 5 shows steps in main PIC loop that are replaced with TC method. New (with TC
method) PIC main loop is shown on figure 6. Because in each time step (in each loop) in PIC
simulation new particles are injected into simulation domain, tree has to be generated again.

Integration of equations
of motion

Fi v’i xi
absorbtion, etc.)
boundaries (emmision,
Particle loss/gain on

Integration of field
equations on grid

(, J)ρj j (E , B)j j

fields to particles
Interpolation of grid

(E , B)j j Fi

Monte Carlo collisions
of motion

v’i vi

Interpolation of particle
sources to grid

(, J)ρj j(x , v)ii

t∆

Figure 5: Steps in main PIC loop that are not necessary when using treecode

absorbtion, etc.)
boundaries (emmision,
Particle loss/gain on

Generate tree for current
particle positions

t∆

Fi, total(x , v)ii

Calculation of forces
via treecode (TC)

TC

Integration of equations
of motion

xiv’iFi, total

Figure 6: Simple PIC main loop with treecode

General idea for calculating the force on current particle is to replace summation between
particles with summation between particle and clusters. It is important to distinguish forces in
treecode method from force in PIC simulations. Force calculated in treecode method is total
force and we can write

(1) Fi,total = Fi + F̃ = FPIC + Fpert

where Ftotal is force calculated in TC method, FPIC is force calculated in PIC simulation (locally
averaged force) and Fpert is a force that takes into accont perturbations (for example, collusions).

Instead of calculating forces between particle (particle-particle interaction), we can use
particle-cluster interaction, defined with tree generated in first step of TC method. Instead
of

(2) ~Fi,total =
qi

4πε0

NC∑

j=1

qj
(ri − rj)2

11

we can use

(3) ~Fi,total =
qi

4πε0

qC
R2

where NC is number of particles in cluster, j is index in cluster (figure 7). Of course is qC
calculated with summation, but is calculated only once - in process of generating a tree.

(4) qC =

NC∑

j=1

qj

Center of cluster is calculated with

(5) xC =
1

NC

NC∑

j=1

xj

r
R

< α

j = 1...N C

R

r

Condition:particle i

cluster of points

center point

Figure 7: How clusters are defined and used in force calculation

If we create tree that has much less clusters (leafs in tree) than particles, we can expect
reduction of simulation times. Calculating of force on a single particle (following algorithm has
to be repeated for all particles in system) is composed from following steps (figure 8):

1. For calculating the force, one has to define all particles in a domain, current particle for
which to calculate force and of course generated tree in form of node from which to start.
At the beginning of calculation of force, root node of tree is given.

2. This step is important: here we define if we can use particle-cluster interaction to calculate
force or should we do direct summation/continue down the tree. Condition is usually
defined by distance between particle and center of cluster (for 2-D representation see
figure 8). We define error tolerance parameter α, with values α < 1. If relation R > rc/α,
then we can use particle-cluster interaction. R is distance between particle and center of
cluster, r is cluster radius (figure 7).

3. If particle “is too close to cluster” (based on condition, described before), then we check
if current node is leaf (node without children). In that case, we use particle-particle
interaction, i.e. direct summation of forces between particles.

4. In case node has children, we calculate force on current particle by summing all forces
calculated for all children in current node.

5. At the end, calculated force is returned.

12

particle far
away from cluster given

by node

NO

YES F −> calculate using
particle−cluster

particles
current particle
node of tree

input:

current
node is

leaf

YES

NO

F −> calculate using
direct summation

return F

calculate force in particle by all sub−nodes

F −> sum of forces of all sub−nodes
of current node

Figure 8: Steps in calculating force on a single particle

13

5 Conclusion

Current status of treecode in PIC simulation promises a lot - it seams that with proper selection
of parameters for treecode (when to stop creation of clusters, . . .) we could gain a lot regarding
shorter computing times.

Current available testing between PIC and TC method (as presented in [5]) is comparison in
program made in MatLab. Results are not promising as TC method is almost 70% slower than
PIC method, but a lot faster than direct summation. Because testing was done in MatLab, one
can assume that program in languages that have better control over memory management and
with better algorithms will be faster. Despite not promising results from testing presented in
[5], TC method is promising - we can expect to reduce times required by PIC simulation if algo-
rithms would be optimized and program would be done in C/C++ or any similar programming
language.

TC method will be first tested as a stand alone PIC simulation for specific similation case
and tested against current PIC simulation codes. In first step, TC method will be programmed
in programming language C. After first tests and comparisons made, if it turnes out that method
is promising, it will be rewritten in C++ and included in OOPD1 - PIC software developed in
Berkeley Plasma Theory and Simulation Group from University of California, Berkeley, USA.

14

References

[1] Introduction to Plasma Physics, with space and Laboratory Applications. Cambridge Uni-
versity Press, 2005.

[2] J. Barnes and P. Hut. A hierarchical o(nlogn) force-calculation algorithm. , 324:446–449,
dec 1986.

[3] C. K. Birdsal and A. B. Langdon. Plasma Physics via Computer Simulation. McGraw-Hill,
1985.

[4] A. J. Christlieb, R. Krasny, and J. P. Verboncoeur. A treecode algorithm for simulating
electron dynamics in a penning-malmberg trap. Computer Physics Communications, 164(1-
3):306–310, 2004.

[5] Andrew J. Christlieb, R. Krasny, and John P. Verboncoeur. Efficient particle simulation of
a virtual cathode using a grod-free treecode poisson solver. IEEE Transactions on plasma
science, 32(2):384–389, April 2004.

[6] Suhas V. Patankar. Numerical Heat Transfer And Fluid Flow. Tylor&Francis, 1980.

[7] Hari Sundar, Rahul S. Sampath, Santi S. Adavani, Christos Davatzikos, and George Biros.
Low-constant parallel algorithms for finite element simulations using linear octrees. In SC
’07: Proceedings of the 2007 ACM/IEEE conference on Supercomputing, pages 1–12, New
York, NY, USA, 2007. ACM.

[8] John P. Verboncoeur. Particle simulation of plasmas: review and advances. Plasma Physics
and Controlled Fusion, 47:A231–A260, 2005.

[9] John P. Verboncoeur. Partice-in-cell techniques. Technical report, Department of Nuclear
Engineeringn, University of California, Berkeley, CA-94720-1730, May 2007.

[10] J.P. Verboncoeur, A.B. Langdon, and N.T. Gladd. An object-oriented electromagnetic pic
code. Technical Report UCB/ERL M94/71, EECS Department, University of California,
Berkeley, 1994.

15

