Integrated approach for noise reduction on vacuum motors

Tutorial

Dr. Jože Tavčar DOMEL d.d. Slovenia

Integrated approach for noise reduction on vacuum motors

Agenda

- Introduction
- Sound physical background
- Sound pressure and power measurement

Research methods

- Vibration control
- Aero-dynamic noise
- CFD calculations
- Noise camera
- Case study (noise control / peak removal)
 - Variation of impeller geometry
 - Helmholtz resonator
- Active noise control

Conclusions

DOMEL LOCATION

2005

- •Domel d.d., Železniki, Slovenia
- •Since 1946
- •Global emotor producer
- •http://www.domel.com

PRODUCT GROUPS

VACUUM CLEANER MOTORS -DRY ASPIRATION VACUUM CLEANER MOTORS -WET & DRY ASPIRATION

DC MOTORS

UNIVERSAL COMMUTATOR MOTORS

BRUSHLESS EC DC BLOWERS/PUMPS EC CENTRIFUGAL FANS EC EXTERNAL ROTOR MOTORS

> TOOLS COMPONENTS

> > 2005

information: <u>www.domel.com</u>

Sound – Physical background

Physical background:

- Sound sources
- Human perception of the sound
- How to measure sound ?

Sound wave

Bruel&Kjaer

Sound Source: Compressions **Barefactions** Structural vibrations Aero-dynamic - Fluid flow Speed of sound at normal Wavelength (λ) = Speed of sound Wavelength in Meters Frequency air conditions: 340 m/s 20 m 10 m 2 m 0.5 m 0.2 m 0.1 m 0,05 m 5 m 1 m 20 Hz 10 Hz 50 Hz 100 Hz 200 Hz 500 Hz 1000 Hz 5000 Hz 10000 H Frequency in Hertz

Human perception of sound

Analogy between sound pressure (L_p) and temperature (T) and sound power (L_w) and electric power

Sound Source :

Quantifikacation of sound sources

Measurment equipment – sound pressure (L_p)

Microphon

(condenser, tensioned-metal diaphragm)

- Preamplifier
 (converts output signal into low impedance)
- signal analyser (FFT, CPB)
- anechoic chamber (free field)

Signal analyzer

Bruel&Kjaer

Measurment equipment – sound intensity

Equipment to measure sound intensity:

- Sound sonde 2 phase microphone
- Measurement is not sensitive for reflections
- Measurment at all mesh points -> sound intensity map
- Sources of sound on bigger objects

Measurements: noise spectrum in anechoic chamber

Noise pressure measurement Lp Noise power measurement Lw Pressure-based, almost free-field, ISO 3744 (soft padding on the walls) $L_p = 10 \log_{10} p^2 / p_o^2$ $L_w = 10 \log_{10} W / W_o$ Bruel&Kjaer[;]

nelevani iu 150 3745

Methods of measuring Sound power (P_w) level

- Pressure-Based, Free Field
- Almost free-field, ISO 3744
- Anechoic or Semi-anechoic chamber, ISO 3745
- Pressure-based, Diffuse Field
- Reverberation room, ISO 3741
- Special reverberation room, ISO 3743 sound energy is uniformly distributed
- Intensity
- Scanned Measurements, ISO 9614 2
- Point measurements, ISO 9614 1

10k [Hz]

12k

14k

16k

18k

20k

8k

80

70

60

50-

40

30

20

10[.] 0

0

2k

4k

6k

FFT and CPB spectrum

CPB – Constant Percentage Bandwidth 1/12 octave / 1/3 octave

250 Hz – 500 Hz1 Octavehigher frequency = 2 x lower freq.1 Octave = 8 tones in music

A third octave: higher freq. = 1,26 times lower freq.

FFT – Fast Fourie Transformation linear frequency scale (x-axis)

Octave

A tonal difference of two pairs of tones is perceived equally if the ration (and not absolut difference) of the two frequency pairs is equal.

f _{a1}			
f _{a2}	- f _{b2}		
		+ 50	
		2550 Hz	
500 Hz x 1.1		2500 Hz X 1.1	A
550 Hz		2750 Hz	A

Multiple sound sources

n
$$L_{pi}/10$$

 $L_{p sum} = 10 \log_{10} \Sigma (10)$
 $i=1$

Example:

65 dB + 65 dB = 65 + 3 dB = 68 dB 10 x 65 dB = 65 + 10 dB = 75 dB 90 dB + 80 dB = 90.4 dB 82 dB + 77 dB = 83.2 dB

Influence of the peaks or wider broadband noise is important

Example:		
Noise level	Pressure	e increase
20 dB	1000 %	
10 dB	316 %	twice as loud
6 dB	100 %	
3.5 dB	50 %	smallest change
		we our neur

Sound quality; editing frequency band filters, special effects

Soundprobe2 - noise_domel_462.3.451_3_orifice_16_	5000 Hz	A C		
<u>File Edit View Effects Enhance Restoration Visualisation Tools</u>				
1 🗃 🚅 🖬 🕼 🛱 📾 🛤 🛤 🛤 🛤 🛤 🛤 🛤 🛤				
	0;05,19 View: 00:00.0 Frequency: 0.0 Hz 22050.0 Hz	Length N/A 00:15.0 z 22050.0 Hz	tone	
noise_domel_462.3.451_3_orifice_16_filter_BPF.wav	550 Hz	M É		
	Preset: Last Used	Apply	550 HZ	
20.0 17.5 15.0 12.5 10.0 7.5	Apply On: noise_domel_462.3.451_3 ▼ to the: Entire Document ▼ Frequency Parameters	To a New Document Selection Create Undo Preview Realtime Input Stop Preview/Realtime With Effect Without Effect Difference Record New	Motor sound Motor sound + BPF filter	
 5.0 2.5 	Variable Level? Variation Filter Type: Bandreject Accuracy: Good (Default) Advanced	da to Favourites	Vacuum clea (broadband so	ner 🅀 ound)
0.0 0.0 00.00 00.01.53 00.03.05 00.04.58 00.06.1	10 00:07.63 00:09.16 00:10.68 00:12.2	l-Time 🗖 Bypass		
Ready.	241:42:24.8 free 10	08768.09 MB fre 🏼 🎢		

Noise sources on Vacuum Cleaner

vacuum cleaner motor
vibrations of the vacuum cleaner housing
not optimized flow channels, flow distortion
motorized power nozzle
high velocities of air at the intake

VC Motor noise sources:

- Aero-acoustic reasons,
- vibrations of the VCM structure,
- mechanical reasons (sliding contact between brush and commutator, bearings...)
- electromagnetic reasons,...

L_w – Noise power level

Integrated approach to noise reduction

Noise sources

Structural born noise:

- Case study: vibrations of the vacuum cleaner cover
- Run up analyses
- Modal analyses
- Vibrations damping

Parts of Vacuum Motor

Sound power calculation of structural borne noise from vibration level and surface size (ISO 7849)

W(f)

v²(f)

ρ

С

S

σ

Lw Wo

$$W(f) = \rho c \overline{v^2(f)} S \sigma(f)$$

$$L_W = 10 \log \frac{W}{W_0} \qquad \sigma = 1/((1+0.1\frac{c^2}{(fd)^2}))$$

$$d = \sqrt{\frac{S}{\pi}}$$

- sound power at specific frequency (W)
- air density (1,2 kg/m3)
- speed of the sound (340 m/s)
- vibration level at particular frequency (m/s)
- surface size (m²)
- frequency (Hz)
- surface dissemination factor
- sound power level in dB
- reference sound power (1 pW)

•Resonance on the motors cover at BPF •FEM calculation (Boundaryconditions)

Sound power Lw calculation Influence of the surface size - S

Numerical Simulations Mechanics (LADISK, FS)

Measurements: Laser vibrometer

- Bruel&Kaer Pulse system
- Contact less laser measurements of vibrations
 - Small parts
 - During rotation

Frequency spectrum - FFT

20 0 [] (Nominal V

50k

Run up analysis to determine possible resonances

Sound pressure spectrum as a function of frequency (x-axis) and speed (y- axis) Order tracking analysis Harmonics – x axis

Case study: impeller resonance

Impeller natural modes of vibrations

Vibrations spectrum of impulse excitation in tangential direction

Modal analyses I

Modal analyses II (ATC, Drachten)

Damping of vibration

Damping materials

Cover made from accustic polyamide

Steel 0.5mm Vs polyamide

> With an high insulation grade as the the cover : <u>Improves by 3dB</u> the acoustic insulation in comparison with

the steel cover

2,2mm (EH50)

Transmision loss measurements

Noise sources

Aero-dynamic noise:

- blade passing frequency noise (fan and diffuser blade interaction)
- CFD calculation
- flow visualisation
- acustic camera

Aerodynamic calculations of impeller and diffuser geometry

CFD analyses of Global motor, CFX software LECAD, Faculty of Mechanical Engineering Ljubljana

Matjaž Šubelj, LECAD

K-ε turbolence Model

Airflow 29 l/s (orifice fi19)

Visualization of the airflow Janez Rihtarsic, LECAD, FME Ljubljana

Visualization of the airflow Janez Rihtarsic, LECAD, FME Ljubljana

Results of powder applying

Measurements: Test-rig for rapid examinations of VCM's

- on-line monitoring of motors or impellers only
- rapid examination
- high flexibility
- according to several standards

Acoustic camera principles of measurements (ATC)

Array of microphones / sound camera

Acoustic camera 3 (Philips, ATC) left side, blade passing frequency, airflow 20 l/sec

0 degrees

60 degrees

120 degrees

180 degrees

240 degrees

300 degrees

Standing wave experiment setup

Standing wave Sound measurement

Peak hold measurement (peak overlap)

Standing wave FEM calculation (ATC, Drachten)

Noise level reduction

Case study:

- Good maching between vaccum cleaner and motor
- Impeller design
- Helmholtz resonator

Good Matching between vacuum cleaner and Motor reduces noise level

• Matching point: pressure produced by the VCM = pressure loss through the vacuum cleaner

Sound spectrum / total level / annoying peaks

Diffuser removal - 2

Impeller blade cut (462)

Inclination down

Standard blade

Improved performance at low airflow with blade cut **Inclination down**

Small influence on noise

Impeller geometry variation Taguchi experiment

1 – shorter blade (cut)

- A 0.0 mm (current)
- B-2.0 mm
- C-4.0 mm

2 - impeller exit width

A - 6.3 mm - (current impeller fi 90) B - 5.7 mm (input width (6.3 mm)) C - 5.0 mm ((input width (6.3 mm))

3 – shape of exit blade

A – blade cut with inclination 30 degrees
B – streight cut (current)
4 – impeller input width

A – 6.3 mm - (current impeller fi 90) B – 8.0 mm

5 – distance between impeller and diffuser

Result: 3 dB noise reduction

Taguchi system Prepared on the base of experiences and literature review

Primary and secondary flow: reason for Blade Passing Frequency

Helmholtz Resonator – technical principle

Resonator – implementation detail

Resonator and total noise level

Pink line -VCM without resonator

Active noise control

Active noise control I

- Idea comes from 1930's, more development in 1950's
- several commercial application in the last 15 years (from simple headphone (cancel low-frequency noise), vehicle cabins, military applications in helicopter)

Physical principle:

- Control wave have the same amplitude and shifted phase therefore is the noise eliminated or significantly reduced.
- active noise cancellation (ANC) and
- active structural-acoustic control (ASAC)

Experiment of ANC with two microphones from Virginia university

Active noise control II

- Active noise control is more efficient at lower frequencies (< 1000 Hz)
- Passive damping is more efficient at higher frequencies (> 1000 Hz)

LIMITATIONS: Costs of the advanced equipment (microphone, speaker, feedback control system)

Efficiency depend on many circumstances:

ANC works best for sound fields that are spatially simple
 Controlling a spatially complicated sound field is beyond today's techn.
 It is easier to control noise in an enclosed space

- Broadband noise is harder to control than tonal noise

 ANC works best when the wavelength is long compared to the dimensions of its surroundings (500 Hz => 0.68 m)

Application of ANC and EC motors

- Running project: application of ANC to EC motors

Active noise control is more efficient at lower frequencies (< 1000 Hz) => this is the speed of rotation and dominated peak

Use of ANC for reduction of rotating speed frequency at 400 Hz ANC will be applied inside the motor or inside the appliance

Conclusions

Noise reduction is possible through:

- Integrated approach
- Understanding physical background of the noise sources
- Advanced numerical and measurement methods
- Innovative solutions
- Close cooperation between motor and appliance manufacturer

information: www.domel.com

http://www.burger.si/SLOIndex.htm

http://www.burger.si/SLOIndex.htm

